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ABSTRACT

With the increasing opportunities for research in a

microgravity environment, there arises a need for understanding

fluid mechanics under such conditions. In particular, a number

of material processing configurations involve fluid-fluid

interfaces which may experience instabilities in the presence

of external forcing. In a microgravity environment, these

accelerations may be periodic or impulse-type in nature. This

research investigates the behavior of a multi-layer idealized

fluid configuration which is infinite in extent. The analysis

is linear, and each fluid region is considered inviscid,

incompressible, and immiscible.

An initial parametric study of configuration stability in

the presence of a constant acceleration field is performed.

The zero mean gravity limit case serves as the base state for

the subsequent time-dependent forcing cases. A stability

analysis of the multi-layer fluid system in the presence of

periodic forcing Is investigated. Floquet theory is utilized.

A parameter study is performed, and regions of stability are

identified. For the impulse-type forcing case, asymptotic

stability is established for the configuration. Using numerical

integration, the time response of the interfaces is determined.
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CHAPTER1

INTRODUCTION

i.i Literature review

The microgravity environment aboard the space shuttle has

given rise to an number of research opportunities which will

increase when space station becomes operational. In

particular, materials processing , which generally involves

fluid configurations, will involve processes which exhibit

significantly different behavior in a microgravity environment.

The gravity-induced fluld-thermal flows; le. buoyancy-driven

convection in liquids, will no longer contribute. This

physical phenomenon masked the presence of thermo-capillary

flows, which will now assume a greater role in a microgravity

environment*.

The effect of gravity has been greatly reduced in

low-gravity aircraft flights and drop tubes which provide short

periods of microgravlty, sufficient for some research, but

certainly too brief for most materials processing experiments.

The advent of extended spaceflight has dramatically increased

the opportunities for long-duratlon research and development in

space. There are numerous technological applications which are

envisioned in a microgravity environment.

The growth of crystals for electronic materials has not

reached theoretical performance limits due to defects caused in

1



part by the presence of gravity. During the spacelab missions,

scientists were able to monitor growth of a crystal through

each stage of its formation. In earth-grown crystals, it can

be observed where the seed crystal stops and the new growth

begins. The introduction of such a defect was not detected in

space due to the lack of gravity-induced convection 2°

The great reduction in convection is also relevant to

metallurgical manufacturing. A microgravity environment

provides greater understanding of how liquefied metals diffuse

through each other prior to solidification. Such knowledge is

important for the production of improved and novel alloys.

Containerless processing makes possible the production of

much improved glasses and ceramics. In such a process, the

sample is suspended and manipulated by acoustical and

electromagnetic forces without the contamination of a

container. Large samples can be dealt with in a microgravity

environment _.

Biological processing also benefits from space. Large,

pure crystals allow analysis of many unknown protein structures

which are essential to the design of new and improved drugs.

There is also effort towards the separation and purification of

biological substances for pharmaceutical purposes .7'2..

In the absence of gravity, fluid behavior which might

normally be hidden by gravity-drlven flows in a terrestrial

environment can be observed and analyzed. Drop and fluid

column dynamics in microgravity permit experimentation of basic



- •

fluid physics theories. Experiments have been performed

concerning the stability of liquid bridges in a short term

microgravlty on a rocket *s. Also, experimental work has been

done on board Spacelab to investigate the shapes of rotating

• 28
free drops in a microgravity envlronment . In fact, the fluid

configurations of drop dynamics and liquid columns will occur

not only in fundamental studies, but also in materials

processing applications. For example, the proposed

solidification of novel alloys could take place in an acoustic

levitation chamber, with the liquid sample having a drop

configuration.

A float zone configuration can be utilized in the growth

of crystals. The float zone itself is modeled by a liquid

column. In materials processing applications, heat and mass

transfer effects are present in addition to the fluid dynamics.

In fact, Marangoni convection would occur in the liquid column

in a realistic processing scenario. It is currently thought

that this convection could be reduced via the addition of a

surrounding layer of fluid around the float zone. This would

result in a multi-layer, compound fluid column configuration 2.

The environment on board a spacecraft is not strictly a

microgravlty environment. Rather, residual accelerations exist

which could affect any ongoing materials science or space

processing experiments. A recent summary 22 indicates that

on board the space shuttle, accelerations include those in the

frequency range up to ten hertz, with acceleration levels



ranging from 10"S*gearth to 10"3*g..rth. In addition to

periodic accelerations (g-jitter), residual accelerations may

be of impulse type, due to such causes as station-keeping

maneuvers and astronaut motion 27.

Most processes involve fluid dynamics, and in particular,

fluid interfaces. This study does not investigate a specific

process per se, but instead considers the stability of

initially planar fluid interfaces.

Previous work on fluid interfaces in microgravity has

focused predominantly on the application of fuel slosh in

tanks. Most recently, this has included work done by Hung et

al 9, which considered g-jitter in a slosh tank. A brief

review of earlier work, as well as an extension of the previous

efforts, was given by Gu et al 7. These investigations all

involved liquid in a container of specified shape with a free

surface.

The stability of a single planar free surface subjected to

periodic forcing in the direction perpendicular to the

interface has been investigated _'6. Both studies were done in

a l-g ambient environment and required the use of a container.

In the work of Benjamin and Ursell _, the container was

cylindrical in shape. The analysis led to a Mathieu equation

which governed the tlme-dependent amplitude of the disturbance.

They were able to make statements concerning the interface

stability based upon known mathematical properties of Mathieu

equations. The case of a rectangular container has been



addressed recently by Gu6, and the results extended into the

nonlinear regime. Both of these investigations utilized an

inviscid analysis.

Viscous effects on the stability properties have been

investigated recently in idealized infinite or semi-infinite

configurations which have one fluid-fluid interface s'12 The

forcing was periodic and directed perpendicular to the

interface. The work of Jacqmin and Duva112 assumed a zero mean

g-level and pertained to a microgravity environment. A Floqu_t

analysis was applied to the fluid system for the case of

sinusoidal forcing. Stability boundaries were obtained from

the results.

Recently, Jacqmin has studied the stability of an

oscillated fluid with a uniform density gradient 12. The case

of forcing perpendicular to the density gradient was

investigated. Such a problem involves the Kelvin-Helmholtz

instability.

1.20b_ectlve.

This research will consider a multi-layer fluid

configuration unbounded in space. Multi-layer fluid

configurations are finding applications in materials processing

scenarios in mlcrogravity. Although the infinite, multiple

layer fluld system is not physically realistic, it is the

logical extension of work done previously in the one interface,



infinite system. As such, it will provide insight into the

behavior of configurations with multiple interfaces in the

presence of forcing.

A layer of finite height will be situated between two

semi-infinite layers of fluid. The analysis is linear, and

each fluid region is considered inviscld, irrotational,

incompressible, and immiscible. A normal mode approach in the

spatial variables will be assumed. Surface tension is the only

property of each interface and is taken to be constant.

Jacqmin and Dural showed that the presence of even weak surface

tension can overwhelm the effects of viscosity, making the

viscous analysis of secondary importance 12.

The objective is to investigate the configuration behavior

in the presence of microgravity environment acceleration

fields. As stated previously, these may manifest as periodic

or non-periodlc Impulse-type accelerations. It is recognized

that in practice, the true acceleration field will be random in

magnitude and orientation. Two subcasss will be investigated:

1) periodic forcing directed normal to the interface (a cosine

forcing function will be assumed), 2) non-periodlc but

time-dependent normal impulse forcing.

Am a preliminary step to this investigation, the stability

of the configuration in the presence of a constant acceleration

field will be investigated (Chapter 2). Regions of stabillty

and various parametric trends will be established. The zero

mean gravity limit case will ultimately serve as the base state



for the investigation of the time-dependent acceleration cases.

The periodic forcing case results in a system of four

ordinary differential equations (in time) with periodic

time-dependence. Such a problem is well-posed for application

of Floquet theory s'2s in which the time-dependent coefficients

are expressed in terms of a Floquet exponent. Previous work in

fluid mechanics has utilized Floquet theory s'*2 . It is,

however, more generally applied to dynamical systems zs. One

recent application involved the analysis of a

spin-stabilized satellite in orbit 26. In the periodic forcing

case, the system of fluid equations can be converted to an

infinite algebraic eigensystem. The nature of the real

component of the eigenvalue will determine configuration

stability. The effect of six non-dimensional parameters will

be investigated.

For the non-perlodlc case, asymptotic stability will be

established according to mathematical theory. The system

results in four linear differential equations which will be

integrated numerically. The time response of each interface

will be determined, and parametric trends will be discerned.



CHAPTER 2

MULTI-LAYER FLUID CONFIGURATION STABILITY IN THE PRESENCE

OF CONSTANT ACCELERATION FIELDS

2.1 Problem description

Prior to an analysis of stability of a multi-layered

configuration in the presence of time-dependent forcing, cases

will be considered in which the body force is due entirely to a

constant gravitational

l*g.6rt, and 0*g.arth

intermediate values.

acceleration. The limit cases of

are studied, as well as various

The O*g.ar_h mean state will ultimately

serve as a basis for investigating the effects of residual

accelerations in Chapters 3 and 4.

The configuration to be considered is comprised of three

horizontal fluid layers. No rigid boundaries are present. The

layers extend to infinity in the horizontal directions.

The top and bottom layers are considered to be semi-infinite

in nature, while the middle layer has a finite height. The

geometry of the figure is given by Figure 2.1.

The base state is one of zero mean motion in each of the

three fluid regions. The fluids are immiscible and will be

taken as Invlscld, Irrotational and incompressible. Surface

tension is a property of the interfaces. A normal mode

approach is assumed. That is, the small amplitude

perturbations are wavelike in nature.

The fluids considered in this study are water, air, and

8



Configuration Geometry

region 2 P2,

y=h+_

region 1 P l, ¢1

X
"mI

region 3 P3, ¢b

p ffi density of subscripted re,on

¢) = potential function of subscripted region

= surface tension of subscripted interface

11 = perturbation of subscripted interface

Figure 2.1

9



silicone oil. Four different

following configurations:

cases are examined in the

CASE i: air/silicone oil/water

CASE 2: air/water/air

CASE 3: air/silicone oil/air

CASE 4: water/silicone oil/water

(region 2/region i/region 3)

I!

II

!!

The parameters to be varied include height of the middle

slab, wave number of the interracial perturbation, and the

value of the constant gravitational acceleration. By varying

these quantities, the propagation speed of the perturbations

can be calculated for different parameter conditions. A

positive value of the imaginary component of the propagation

speed will indicate an instability on the fluid system.

Several of the cases to be investigated have a

configuration such that the density of the upper fluid is

greater than that of the lower fluid, giving rise to a motion

driven by gravity. This type of instability is known as the

Rayleigh-Taylor instability. It will be shown that the growth

rate of these instabilities is determined by the nature of the

solution to the dispersion relation. More specifically, if a

certain configuration generates non-zero imaginary components

of the propagation speed, then depending on the sign of the

quantity, the Rayleigh-Taylor instability will occur.

i0



2.2 Equation development

2.2a Governing equations

As stated previously, a normal mode perturbation has been

utilized. The waveform of the disturbance is given by the

following:

_(x,t) - _e ik(x-ct) (2.1)

where = amplitude (small)

k = wave number (real number)

c = propagation speed (complex number)

n = interface shape

The governing equations of incompressible fluid mechanics

are the continuity equation and the momentum equation. The

analysis is inviscid, irrotational, and linear. Linearization

is done about a base state of zero mean motion. The following

equations govern fluid behavior.

9.u' = 0 (2.2)

8U'

p -- - -Vp'
at

(2.3a)

0 - -VPmea n + pgey
(2.3b)

11



Note the momentum equation has been split into the perturbation

(2.3a) and mean (2.3b) equations Henceforth, primes will be

omitted for perturbation values.

A potential function, #, with u = V#, is defined.

Substitution into equation (2.2) yields Laplace's equation.

v2_ = 0 (2.4)

Laplace's equation must be solved in all three regions.

Separation of variables yields the following solutions for the

potential functions.

#l = [ AekY + Be -ky] elk(x-ct)

@2 = ce-kYeik(x-ct]

@3 = DekYeik(x-ct]

(2.5)

(2.6)

(2.7)

where A, B, C, and Dare constant coefficients.

Furthermore, at each interface the perturbation is defined

as

12



= Eeik(x-ct)
nii (2.8)

= Feik(x-ct)
nii I (2.9)

2.2b Boundary conditions

The dispersion relation is obtained by applying three

boundary conditions at each interface. These three conditions

are: (I) the kinematic boundary condition, (2) the

matching of the normal component of the velocity, and (3) the

normal force balance.

The kinematic condition states that a particle of fluid

which is at some point on the surface will always remain on

that surface. This can be written as:

D(y-¢W). 0 (2.10)
Dt

By converting into Eulerian form, and noting that x, y,

and t are independent and that the waveform depends solely on x

and t, the equation (after linearization) becomes:

13



a__ (x,t) = a__ (X,Yo+C_,t)
at ay

(yo = 0 or h) (2.11)

By applying a Taylor expansion and again neglecting

quadratically small terms, the kinematic boundary condition at

each interface simplifies to:

anli
a__ (x,h,t) = (x,t) (2.12)

ay at

a_II I
a__ (x,O,t) - (x,t) (2.z3)

ay at

Imposition of the condition that the normal component of

velocity be continuous across the interface yields:

a_ z 8_ 2
m n E at y - h (2.14)

ay sy

8#I _#3 at y 0 (2 15)

sy ay

Finally, the third boundary condition is imposed. Taking

14



into account the surface tension, the normal force balance

takes the following form:

Plower- Pupper = 7v._
(2.16)

where _ = surface tension

= the outward pointing normal to the interface

By noting that the perturbation is a function of x and t

only, the final boundary conditions can be derived at each

interface.

a¢I a¢3
Pl -- - P3 --

at 8t

a _III

+ g(Pl-P3)nIi I = -ZIi Iax 2

(2.17)

(2.1s)

2.2c Dispersion relation

These six algebraic equations (2.12-2.15,2.17,2.18) form a

homogeneous system in unknowns A,B,C,D,E, and F. In order to

have a solution, the determinant corresponding to this system

must equal zero. This results in the following dispersion

relation.
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(PI+P3 (PI+P2)e 2kh + (p2-Pl) (Pl-P3)]
4

C

+ (_(P2-Pl)-TIIk) ( _(P3-Pl)-'III k) = o (2.19)

Thus, this propagation speed, c, is given by the solution

of a fourth order polynomial. It is also the eigenvalue.

From the theory of roots of a polynomial, it is readily seen

that there exists the possibility of complex roots to the

dispersion relation. The propagation speed can be written as a

complex number.

c - c + ic Z (2.20)

Hence, the perturbation equations can actually be written as:
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= Ee ikx (-ikcRt) (kclt)
_II e e

Fe ikx (-ikcRt) (kcit)
_iii = e e

(2.21)

(2 .22)

The first two exponential terms of each equation are

oscillatory in nature. The third exponential factor is a real

number. An imaginary component equal to zero implies a neutral

disturbance, while if the value is less than zero, the

exponential term decays in time, and the system remains stable.

However, if this imaginary component, cl, is positive, the

exponential term grows in time, resulting in an instability.

This case is known as the Rayleigh-Taylor instability. An

analytical limit case can be obtained from the full dispersion

relation for the special case in which the ratios of the top

and bottom densities to the middle density are negligibly

small.

7 i k T I

6)1 Pl

+ [(e2kh-1) ( _ - ¥III k _ii k0-7I] = 0 (2.23)
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For such cases, the configuration will remain stable if the

following inequality holds true.

;III k2 P2 P3

g for -- , -- • 1
Pl Pl Pl

(2.24)

The scope of this study is to analyze the four

previously stated cases under various parameter conditions.

That is, by allowing the parameters to vary over a specified

range, the roots of the dispersion relation can be calculated

;and hence, interface stability can be determined. The

parameters that are considered are the height of the middle

layer, the wave number, and the value of the gravitational

constant. For our ultimate purposes, we are most interested in

the case in which the time-independent gravitational body force

is zero.

2.3 Results

The dispersion relation was solved numerically using the

DZPORC routine of the IMSL library. The DZPORC routine makes

use of the Jenklns-Traub three-stage algorithm I_, in which the

roots are computed one at a time for real roots and two at a

time for complex conjugate pairs. As the roots are found, the

real root or quadratic factor is removed by polynomial

deflation.
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The fourth order polynomial (in c) has four roots. Because

of the nature of the dispersion relation, the roots

were generated in pairs. That is, for any given solution,

there exist two pairs of roots, where each pair consists of

the positive and negative values of a number. Physically, for

real roots, this means the perturbation may propagate in either

the positive or negative direction. For imaginary roots, it

implies an instability will occur since these roots occur in

complex conjugate pairs. If all the roots are real, the system

will be stable.

Figure 2.2 shows the four roots of the dispersion relation

for Case l (air/silicone oil/water). The roots are plotted

over a range of gravity ratios (g/g.,rth) from 0 to 1.0. As is

expected, since heavier fluids underlie lighter ones this case

is stable for all parametric conditions. (Note that the

non-zero roots are exclusively real.) A less dense fluid above

a more dense fluid is stable to small perturbations in the

presence of constant gravitational forcing.

Figures 2.3, 2.4, and 2.5 show the dispersion solution for

Cases 2,3, and 4, respectively. Each of these cases reveals

the presence of a positive imaginary root, which in turn,

implies an unstable configuration. This behavior is expected

as each case involves a more dense fluid above a less dense

fluid in its configuration.

Since an instability depends solely on the presence of

19



positive imaginary roots, the subsequent figures will display

these particular roots exclusively.

The effect of wave number,(k), on configuration stability

is elucidated in Figures 2.6-2.8. As k values increase, the

configuration becomes more stable. Since k is inversely

proportional to wavelength, the configuration is unstable to

long wavelength perturbations. The restoring force required to

maintain stability is greater in the long wavelength regime.

Note that all cases are stable at 0*go.rib. The results

of Case 1 do not appear since the configuration is stable for

all parameter space.

The effect of surface tension can be readily seen by

comparing Figure 2.6 with 2.7, where the middle layers are

water and silicone oil, respectively. Thus, while their

densities are effectively the same, the water-air interfaces

have surface tension values nearly three times that of the

oil-air interfaces. With the increased restoring force, it is

expected and confirmed that Figure 2.6 will be more stable than

Figure 2.7. In the water case (Fig. 2.6), for a k value of 3,

the system is stable up to g-0.65*g.arth. For the oil case

(Fig. 2.7), for k-3, the configuration becomes unstable at

g=O.23*g,,rth.

From Figure 2.9, it is tempting to conclude that the

middle slab height,(h), has no effect on the stability of the

configuration. This conclusion is valid for values of h which

are large in comparison to the wavelength (recall A = 2_/k).
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When the nondimensional quantity, h/A, is greater than or on

the order of one, middle layer height has little effect on the

stability. In Figure 2.9, this corresponds roughly to values

of h z 5cm (for k=icm-l). For h=Icm, the quantity, h/A, equals

0.16 which is less than O(I). From Figure 2.9 it is seen that

this height is associated with the fastest growing

instabilities.

The effect of middle layer height is even more dramatic in

Figures 2.10 and 2.11. The fastest growing instabilities for

given wavelength perturbation are associated with

configurations with the smallest values of h/A. In Figure

2.10, the smallest value of h/A equals 0.04 (corresponding to

h=0.25cm, k-l.0cm-l). Note that this value relates to the

fastest growing instability.

The limit case (eq. 2.24) simulates a liquid layer

situated between two layers of a gas, and its accuracy can be

verified by comparing it to either Figure 2.6 or 2.7.

According to (2.24), for Case 2 (air/water/alr), and h-lcm, the

instability should originate at

g/ge.rt, "0.661 for k-3.

For Case 2 (air/silicone

instability should start at

g/g.arth'0.073 for k-l, and at

oil/air), and

g/g.,rth-O.027

g/g.,rt,-0.230 for k-3, and g/g.,rth-0.657 for

results from Figures 2.6 and 2.7 confirm these values.

It is seen that in the case of zero gravity,

configuration remains stable. Although we might

h-lcm, the

for k-l,

k-5. The

each

expect

21



Rayleigh-Taylor type instabilities for Cases 2,3, and 4, there

is no body force which would drive the density difference;

hence, the system will remain stable.

This zero mean gravity state will be taken as the base

state for the remainder of the investigations of this thesis.
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CHAPTER 3

MULTI-LAYER FLUID CONFIGURATION STABILITY IN THE PRESENCE

OF A TIME-DEPENDENT PERIODIC ACCELERATION FIELD

3.1 Problem description

The results from Chapter 2 illustrated that for constant

zero gravity the fluid configuration is stable for all

parameter values. This, however, is a highly idealized case.

A recent summary 22 indicates that the environment of board

space shuttle is subjected to residual accelerations ranging

from 10 -5 to 10-3*g.,r_h at a frequency range up to I0 Hz.

Thlm chapter investigates the effect of periodic

accelerations on the interface stability of a multi-layer fluid

configuration without rigid boundaries. The configuration

consists of a layer with finite height situated between two

semi-infinite layers. All three layers extend to infinity in

the horizontal plane. (See Figure 3.1). The accelerations

are periodic about a zero mean gravity level, and are oriented

normal (in the _z direction) to the interfaces.

The three fluids are inviscid, incompressible,

irrotational, and immiscible. Surface tension is a property of

the interfaces. The spatial dependence of the perturbation is

considered to be wavelike.

The dynamics of the above system are again governed by the

continuity and Euler equations. These are non-dimensionalized
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Configuration Geometry

region2 P2,02

z = H + E(t)e i0X+my)

m m _ m

"YtI l

regionl Pl, 01 H/

- F(t)ei(lx_y)

_---.--._._..__. - =.__

7m
X

region3 P3,03

p = density of subscripted region

= potential function of subscripted region

_/ = surface tension of subscripted interface

Figure 3.1
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and linearized, resulting in a system of linear equations with

time-dependent coefficients.

A Floquet analysis is applied. The resulting system can

be viewed as an eigensystem in the Floquet exponent. It is the

value of this exponent which will determine the stability of

the configuration. The linear stability of a perturbation to

the interface is thus dependent upon six non-dimensional

parameters: the density ratios of the outer to middle slabs,

the Froude type number, the Bond type number at each interface,

and the wave number.

3.2 Equation development

3.2a Governing equations and non-dimensionalization

The governing equations are the continuity and the

conservation of momentum equations for an incompressible

and inviscid fluid.

v.u - o (3.1)

au
-- A

m I _ ep + p_.u.vu -vp pG g(_,_) (3.2)
at o z
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where the time-dependence is apparent in the body force

term. Go represents the peak value of the acceleration due to

the periodic g-jitter. Equation (3.2) is to be linearized

about a state of zero mean motion. Quadratically small terms

are neglected (after expansion in a small disturbance

parameter, c).

Expansions of pressure and velocity fields are as follows:

P " Pmean + vP'''+'" (h.o.t.) (3.3-)

U_ - 0 + CU_'..+.. (h.o.t.) (3.4)

(Note the analysis considers zero mean motion (Umean-O).)

The governing equations can be non-dimensionalized to

yield:

?.u' - 0 (3.5)

P

o " P,e..
(3.61))
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where u = Hwf _u (3.7)

_x= H (3s)

t = £ (3.9)

2 2
P = PD H wf p (3.10)

(Note that PD is the average of the density differences

across each interface, and wf is the forcing frequency.)

Equation (3.6b) is the mean conservation of momentum

equation, and (3.5,3.6a) represents the perturbed system.

Note that due to the periodic tlme-dependence, the mean

pressure field will also be periodic in time. The parameter

(Go/H_f2) in equation (3.6b) is taken to be roughly of order

one; this ensures the mean pressure to be of the same order.

For convenience, the tildes will be omitted from this

point forth in Chapter 3. All quantities are henceforth

non-dimensional. Also, the primes will be dropped from

perturbation quantities.

The analysis is incompressible, inviscid, irrotatlonal,

and linear. A potential function can be utilized, giving rise

to Laplace'm equation. Perturbations are taken to be wave-like

in the (xy) plane. The resulting differential equations (in z)

are solved by separation of variables to yield:
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#i = [A(t)ekz + B(t)e-kZ] ei(ix+my)
(3.11)

#2 = [C(t)e -kz] e i(Ix+my) (3.12)

#3 =" [D(t)ekz] ei(Ix+my)
(3.13)

A, B, C, and D are time-dependent coefficients, and k

represents the wave number (k 2 = 12+ m2). # is the potential

function. Subscripts indicate the region of interest. The

pressure (both mean and perturbation) can be obtained from

equations (3.6a) and (3.6b).

A normal mode perturbation approach in the spatially

independent variables is utilized; thus, the equations of each

equilibrium interface can be written as:

Feii- z - 1 - ¢E(t)e i(Ix+my) (3.14)

Feii I- z - 0 - cF(t)e i(Ix+my) (3.15)

where Fe defines the equation of each equilibrium interface,

and E and F are tlme-dependent coefficients.
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3.2b Boundary condition_

Three boundary conditions are imposed on each of the

interfaces: (i) the kinematic boundary condition, (2)

continuity of the normal component of velocity, and (3) the

normal force balance across the interface.

The kinematic boundary condition states that at each

interface

D(Fe) = 0 (3.16)

Pt

which can be expressed as:

8F.._.ee+ u.V (Fe) = 0 (3.17)
8t

Note that after linearization, the gradient of the interface

equation has a contribution in the êz-direction only.

Imposition of this kinematic condition on each of the two

interfaces yield8 the following:

on Feii , _.(t) + k C(t)e "k - 0 (3.18)

on FeIii, -F(t) + k DCt) = 0 (3.19)
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A second boundary condition can be imposed in which the

normal component of the velocity is continuous across the

interface.

a_ l a_ 2
on Fezi , -- - -- (3.20)

8z az

a_ z a_ 3
on FeiII, -- - -- (3.21)

az az

After a Taylor series expansion at each

following relationships are obtained:

interface, the

A(t)e 2k - B(t) --C(t) (3.22)

A(t) - B(t) - D(t) (3.23)

And finally, a (linearized) normal force balance across

the interface is implemented.

Plower- Pupper " I v._ (3.24)
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or, in non-dimensional form:

3 2
PD H _f

7 [P 1lower Pupper = V._ (3.25)

where ¥ = surface tension

= linearized outward pointing normal to the

interface

Recall that the upper and lower pressures each have both a

mean and a perturbation component. Contributions to the

pressure at O(c) (needed in equation (3.25)) involve both the

perturbation pressure given in equation (3.26a) and a second

term due to the wave itself. This second term is listed in

equation (3.26b).

cp = c( -p 8# I
PD 8t

(3.26a)

 u.iGoIsecond term = -- --2 g (t)

PD H_f

cE(t)e
i(Ix+my)

(3.26b)
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Note that the _ second term also contributes at the lower

interface, with E(t) replaced by F(t).

(Recall that primes have been dropped from the perturbation

pressure.)

Substitution of equations (3.26a,b) into equation (3.25)

for each respective interface results in the following

relationships at O(c):

on Fe ,

II

B° 2 [(P2-Pl)

Pl •

Fr.g(t)E(t) - _-D (A(t)ek+B(t)e -k)

P2 (_(t)e-k)] =
+ --

P D
k2E(t) (3.27)

on Feii I ,

B° 3 [(Pl-P3) P--_-l (_,(t)+B(t))
Fr.g(t)F(t) + PD

= k2F (t) (3.28)

PD H2Go Go
- ; Fr -

where B°2'3 ¥II,III H_f 2

Bo2, 3 and Fr are Bond and Froude number type parameters.
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By utilizing equations (3.22,3.23), the

time-dependent coefficients can be eliminated from

and (3.27,3.28) to yield the following system.

C and D

(3.18,3.19)

[i_ [i(t) (z+P2z) + §(t)
PDI

(P21-1)e-kpDl ]

+ E(t)[ (P2I'I)

L PD1 Fr k2
(Fr) g(t) = -- E(t)

Bo 2

(3.29)

+ F(t) [ (I-P31)

L PD1

(I+P31)pDZ]

Fr k2
(Fr) g (t) - -- F(t)

Bo 3

(3.3o)

E:(t) - k [ A(t), k - B(t)e -k] (3.31)

_(t) = k [ A(t) - B(t) ] (3.32)
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P2 P3 PD

where P21 - Pl ' P31 - Pl , PDI - Pl

Thus, the system has been reduced to four ordinary

differential equations (in time) with four time-dependent

unknowns: A,B,E,F. The time-varying forcing function is chosen

to be periodic, with

g(t) - cos(t) 1 eit it)+e" (3.33)

3.3

Floquet theory can then

(3.29-3.32). This is done

time-dependent coefficients as

Application of Floquet theory

be applied to system

by expressing the four

[A(t),B(t),E(t),F(t)] - n_'_®[An,Bn,En,Fn] e Int e At (3.34)

where A is the Floquet exponent.

By substitution of equation (3.34) into the system (3.29-

3.32), the four ordinary differential equations in time can be

expressed as an infinite algebraic system with the Floquet

exponent appearing as a parameter.
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(P21-1) e-k ] Bn
PDI

[0211Fr] rFrk21+ (En_l + En+ I) - __ En =
PDI 2 L so2 J

0

(3.35)

(x+in) A n + (_+in) • 31) Bn
PD1 PD1

+ (Fn_l+Fn+l) - k 2 Fn = 0

PDI 2 3

(3.36)

(_+in)E n + kBne-k - kAnek - 0 (3.3?)

(X+in)F n + kB n - kA n - 0 (3.38)

where n varies from -m to +®. This results in an infinite sys-

tem of equations. The set of homogeneous equations

(3.35-3.38) can be written in the form
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which is the generalized eigenvalue problem. The Floquet

exponent, A , acts as the eigenvalue. X is an infinite column

vector containing the following terms:

X m

En- 1

Fn- 1

An- 1

Bn- 1

E n

Fn

A n

Bn

En+ 1

Fn+l

An+l

Bn+l

(_ - A_) is the coefficient matrix of X. It is generated in

groups of four rows corresponding to a particular value of n.

Matrices _ and _ are shown in Figures 3.2 and 3.3.
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The solution to the single interface problem (Jacqmin and

Dural) _2, utilized Floquet theory and truncated at n = 1241.

It was decided that the multi-layer system should be truncated

at least at this level. In our analysis, n is truncated at

1251 . This generates a system of 204 equations in which the

Floquet exponent is determined by eigenvalue methods. (A

generalized eigenvalue routine is used). Details of the

algorithms are found in Kaufman (1974) .4'Is and Moler and

19
Stewart (1973) .

3.4 Solution methodology

To solve the large, sparse generalized eigensystem, a

routine DGVLCG from the IMSL library package is utilized.

(See Appendix 5.) This routine is based on the LZ algorithm

described by Kaufman (1974), which in turn is similar to the QZ

algorithm (Moler and Stewart,1973) except that it uses

elementary transformations whereas the latter uses orthogonal

transformations.

3.4a Preliminary checks

Four checks were performed to verify the accuracy of the

solutions.
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i) The system was converted to a standard eigensystem

of form, (_ - A _) X = 0 ,which was analyzed using DEVLCG

from IMSL. This particular routine converts the matrix into

a complex upper Hessenberg matrix, in which the eigenvalues

are generated via the QR algorithm (Smith, 1976) 24 There is

agreement of the solution values. (See Appendix 6.)

2) The original matrix was truncated at n = 1501,

producing a much larger matrix. The same eigenvalues were

obtained, with greater multiplicity of each root.

The generated Floquet exponents were resubstituted_)

into

Gauss'

be accurate.

4) A

the linear

method.

investigated.

system to

The checks

(See Appendix 7.)

limit case of the

In this case, P21 =

compute the determinant by

show our eigenvalues to

two interface system was

1.0 and Bo 2= m. The physical

interpretation of such a system is that the top and middle

slabs have the same density, and their interface has zero

surface tension. Hence, the system can be considered as a one

interface configuration at Fell I.

To compare the results of the limit case, an analysis was

performed for a one interface system following the methodology

of sections 3.2-3.3. This new system reduces to two linear

differential equations which are solved via Floquet analysis in

the same manner as was done for the two interface system.

(See Appendices 2 and 8.) A parameter, Q, appears with
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Q = 1.0 * Bo
3

(The constant of unity exists due to fact that the Froude

number identically equals one according to a comparison of the

non-dimensionalizations.)

A comparison of the two interface limit case with the one

interface system for the same physical configuration is shown

in Figures 3.4 and 3.5. The correlation between the two

systems is evident.

The results of these four separate checks provide great

confidence in the numerical results.

3.4b Solution interpretation

The stability of the system can be determined by the

numerical value of the complex eigenvalues. It is readily seen

from equation (3.34) that the time-dependent coefficients will

grow exponentially for positive real components of the Floquet

exponents. Such a case will imply an instability of the fluid

system. Thus, as the eigenvalues are generated, the presence

of a single positive real part of _ will dominate the system,

causing it to be unstable. As this is a linear analysis, no

information can be obtained concerning the finite amplitude

(nonlinear) form of the configuration.

The system of algebraic equations is non-dimensional.

Thus, the linear stability of the fluid layers depends on six

non- dimensional parameters: the two density ratios, the Froude
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number, the Bond type number a_ each interface, and the wave
number.

A parametric study is performed to investigate the effects

of parameter variation on the stability of the fluid system.

The parameter space is defined by appropriate values of the six

non-dimensional parameters pertinent to a microgravity
environment.

As stated previously, the complex Floquet exponent (I) is

the eigenvalue of the system. The presence of a single

positive real component implies exponential growth of the

interface and hence, a subsequent instability. Thus, we are

concerned solely with the largest real component of the Floq_et

exponent. The values of this quantity are charted throughout

the parameter space. A positive value of the largest real

component of the Floquet exponent indicates an instability; a

zero or negative value indicates stability.
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.

3.5 Results

To display most effectively the regions of instability,

the largest (fastest growing) real component of the Floquet

exponent is plotted as a function of the wave number for fixed

values of Bond and Froude numbers and density ratios.

The range for the parameters is as follows:

0.i < k < 5.0

Bo 2 = 1.0, 0.i, 0.01,0.001

Bo 3 = 1.0(Bo2), 2.0(Bo 2)

Fr = 5.0, 1.0, 0.5, 0.I

(Note that the quantities are nondimensional.)

These values correspond to physically realistic configurations

which might be expected in a microgravity environment as well

as satisfying conditions for linear analysis.

For each case, if the forcing function, g(t), were set to

zero instead of cos(t), the configuration would be stable for

all parameter space. The interfaces would simply oscillate

with no growth of the amplitude. It is only with the forcing,

and in the indicated parameter regions, that instabilities may

occur •

In Figures 3.6-3.25, the effect of Bo2(Bo3) on stability

for different values of Fr and density ratios is illustrated.

For Fig.3.6, P21 =i.0, P31 =0.001225, Fr=5.0, and Bo 2 is set

equal to Bo 3. The unstable wave number region is broadest for
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the largest Bo2(Bo 3) values. As Bo2(Bo3) is decreased, the

unstable wave number region shrinks to encompass a smaller k

range and tends towards lower k values. For low Bo2(Bo3)

values, the configuration is unstable to longer wavelength

perturbations in the presence of periodic forcing.

In Figure 3.7, Fr is reduced to 1.0 while other parameter

values remain the same. Though the general qualitative trends

follow, it is seen that the range of unstable wave numbers

is broader than in Figure 3.6.

Figure 3.8 shows an order of magnitude drop in Fr. Again

as Bo2(Bo 3) is increased, the range of unstable wave numbers

broadens. Likewise, as Fr decreases the unstable region

encompasses a broader range of wave numbers.

Similar results are elucidated in Figures 3.9-3.20,

keeping parameter ranges the same for various density ratios.

As Bo2(Bo 3) values are increased, the

numbers widens (corresponding to

disturbances).

range of unstable wave

smaller wavelength

The density ratios in Figures 3.21-3.23 pertain to a

gas/liquid/gas configuration. The qualitative trends of

varying Fr and Bo2(Bo 3) continue. However, the behavior is

observed to be more peaky, with occasional regions of stability

punctuating unstable wave number bands. For the lowest Fr

(Figure 3.23), the unstable band shifts away from the low k

region. Note that in Figure 3.21, the configuration is
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stable when. Bo2(Bo3) is 0.001. Positive values of the real

component of _ occur only for larger Bo2(Bo3) values.

Figures 3.24 and 3.25 show the effect of Bo2 not

equal to Bo3 . In Figure 3.24 the Bo values are equal, whereas

in Figure 3.25, Bo3 is twice Bo2, keeping all other parameters

the same. Physically, the increase of Bo3 while keeping Fr

fixed can be interpreted as decrease in the surface tension

value at the lower interface. The dominant effect is to

broaden the range of unstable wave numbers for each set of Bo

values. Note that Figure 3.25 shows a narrow band of wave

number stability near k=1.95. In general, the numerical value

of the real part of the Floquet exponent (A) is increased for

Bo3 twice the value of Bo2, indicating a faster growing

"fastest growing" disturbance.

The effect of varying Fr while holding Bo2(Bo3) values

fixed is illustrated in Figures 3.26-3.29. As Fr is decreased,

the range of unstable wave numbers increases. Physically, this

can be interpreted as a decrease in configuration stability for

larger frequencies of the g-jitter. The behavior is typical

for the various density ratios and Bo values which were

considered.

The effect of density ratio difference on stability is

presented in Figures 3.30-3.34. Values of P21 and P31

represent the density ratios of the upper and lower regions to

that of the middle layer, respectively. Among cases indicated,

the largest value of PDI [ =(IP21-11+IP31 -II)/2 ] corresponds

55



to the case having the iarges_ range of unstable wave numbers.

Further_nore, it also corresponds to the largest values of the

real component of the Floquet exponent. In general, as PDI is

decreased, the band of unstable wave numbers becomes more

narrow. Results are typical and illustrative for the parameter

space of concern. Note that Figure 3.34 compares

three configurations of gas/liquid/gas with different gas

densities. The three cases have similar results, indicating

that the density of the gas layers is not too significant.

In addition, the case in which both density ratios were

set to unity, indicating.equal densities in all three regions,

was addressed. In such a case, PDI equals zero; hence,

Bo2(Bo3) values are identically zero. Under the action of

g-jitter, lack of density differences between the layers

results in a stable configuration. One would expect the

interfaces to merely oscillate in time. As a further check,

the system was derived using a different definition of PD

[ pD=(Pl+P2+P3)/3 ]. Hence, Bo values are non-zero for equal

densities in each region. Numerical results showed stability

for all parameter values.

The height of the finite middle slab is a physical

quantity which appears in both the Bo and Fr nondimensional

parameters. In particular, Fr is inversely proportional to the

height, while Bo depends on the square of the height. An

increase in height, H, implies a decrease in Fr and an increase

in Bo. As was seen in Figures 3.6-3.25, an increase in Bo
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corresponds to a larger region of unstable wave number space.

From Figures 3.26-3.29, it is seen that the broadest region of

unstable wave numbers occurs at smaller values of Fr. Thus, it

is expected that an increase in H will result in a more

unstable fluid configuration. This is confirmed in Figure

3.35. Results are presented graphically for the case Go =

(10-4*gearth), _f=O.l Hz, and 7II=Tiii=50 dynes/cm. In

addition, P21 =0.8, and P31 =1.2. Larger values of H

correspond to a larger range of unstable wave numbers.

The wave number at which the subharmonic (_=i/2) occurs.

is plotted in Figures 3.36 and 3.37 for a range of Fr with

given values of Bo2(Bo3). It is seen that there is a gradual

shift of the subharmonic to lower wave numbers (or longer

wavelengths) as Fr is increased (ie., as the forcing frequency

decreases). Figure 3.37 represents the case of unequal Bo

values (Bo3=2*Bo2). Physically, this implies the surface

tension of the lower interface is halved. It is seen that this

case has subharmonics occurring at larger values of the wave

number than the case of Bo3=Bo 2 (as shown in Figure 3.36).

Stability boundaries of Fr versus k are plotted in Figures

3.38 and 3.39. This is done for configurations of different

density ratios (as indicated by the different area fill

patterns). Moreover, on each graph, multiple values of Bo2, 3

are represented. The unstable regions are indicated by the

rectangular "filled" regions. No meaning is ascribed to the

width of the rectangles. In general, it is seen that an
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increase in Fr while holding other parameter values fixed

(corresponding to low frequency forcing) results in a smaller

range of unstable wave numbers. Likewise, an increase in Bo

values (corresponding to a decrease in the surface tension)

relates to a broader region of instability, in terms of k.

In general, fluid systems involving larger values of PDI

have wider bands of unstable wave numbers. This is evident in

both Figures 3.38 and 3.39. Note also the "gaps" in the band

of unstable wave numbers. These represent regions of stability

of the fluid configuration. It is generally at higher k values"

(k > i) that these bands of stability occur.

The limit case (P21 =i.0, Bo2=m) was used to compare the

stability of the one interface configuration with that of

the multi-layer fluid system. To compare the two, the

parameters in each case are set equal at interface Fe 3. In this

way, the parameters are consistent in both problems. From

Figures 3.40-3.41, it is readily seen that the multi-layered

configuration is more unstable than the one interface fluid

system. The range of unstable wave numbers is broader for the

multi-layered case. In particular, note the contrast in the

low k region (corresponding to large wavelengths). That is, in

the two interface system the very low k region is generally an

unstable region as compared to the one interface case. In the

one interface model, bands of instability are more frequently

punctuated by narrow regions of wave number stability. These

results are typical and illustrative for various density

ratios.

58



I-T_T-I-T-T-T-T-T-T-I-I-I-I-I-I-I-i-T

....... _ _ __

i ii,,___
,_ •,.-.7

•_- _

B

luouodx_ l_nbo[=l jo lu_uodcuoo [_

59



_u_uodx_ 1_nboI-I 7o _u_uodwoo l_1

60



;>.,
ii

_, imml

0

0

0

C"!

G

II "-"

"" II

II

J
f

I

J
J

t

41,

_ _ m Di

f,"

_ L "_ I 2-- _ m

/

I " ! " ! " | " | _ T " ! _ ! " ! "

"-s

II
".,,,.," !

0

I
@

::::3

• ,'--

,...,
!

I

lu_uodx_ l_nbolH jo lu_uoduJoo [_i

61



• m

m

C_

©

E

II

I

lu_uod×_ l_nboI_4 7o lu_uodtuoo I_i

62



• I

m

L_

0

0

0

(-.q

II .._
m

_" II

m /-
/

1
,,p

f_ f

l " I " I " I " I " I " l "

_u_uodx_ l_nboT-t jo lu_uodwoz [e_

-- rE',

E

e-

0

II

_ I
0 I

I
0

-

r-
_ n

I

63



• m

N

O

O

N l/",

II

L-

II

P'4

f
f

I
J

J
J

! - i - i - l - i - i - ! - ! - i - i

• _ o ' " _ 5 _

luauod×o lonbol-I jo luouodmoa leo1

e_
E

e-

o

II ,

o I

o

I

r4

°_

64





I

___t_ __= __
.°o°o°,° ....... °°o

lu_uodx_ l_nbolH jo lu_uodwoz I_J

II ,

0

e-

l

m

65



• N

09

O

©

O

C

II

II

_' __ _l_ _- _:'_ _, =__ _

IN

e..

O

II

O

O

I

I
I

I

0

lu_uod×_ 1_nbolH jo m_uodtuo0 Fe_J

66



• I

m

e_

0

0

0

¢0

u_.

E

¢.q

0

II i

rq I

0

I

¢q

lu_uodx_ l_nbol.q jo lu_uodmo0 _._

6"7



©

©

0

N

° II

_4

¢,0

lu_uodx_ z_nbol_-I jo luouodtuon I_J

68



LE

©

C

0

L_

II

:_ r-_._u_'_._,¢-_ _'_ :_:r_ _w "_, .-_'e_,_l_

lu_uod×_ _nbolH jo lu_uodtuoz [_

e--

0

II '

0

- I

m

_4

69



_J

,I

'.u_uodx.a _anboh _ jo ]uauodtuoo [_al

II

0

I

0

c_



• m

L_
J

;/1

w

---,I

e_

e-

>

o _

II
!

I

t_

iU_LIOd.x_ lOnbO[_ d jO iL;_tIodwo0 [_i

71



>..,

LE

O9

N

L_
i.)

w

t.-

luouodx$10nboI-[ Io it_auodwoa [_.z



• m

m

©

0

0

_D

I,.f_ I

II

II

t_--,I

j
j

/

j_ --__-_-_ _ L-- _- -
I - ! - 1 " ! - ! " | " ! " • " ! " ! " I " 1 " ! " ! " 1

E

0

_g I

i

--

e-- i

-!

IJ

luouodx_ _nboI_ [o luouodtuoo [_,_

73



_J

I

L_

u

A

0

II ,

0 I

0

-I

lu_uod×_ l_nboI_4 jo _u_uodtuoz [_

74



• m

• I

_J9

©

©

©

-4" e.-, C-4 _ _ _ _ _ ._ u,% ._ _', Cq _

L-

¢2

II

c

O

N

N

I

q

C-I

°_

U.

_u_uod×_ l_nbo[=[ ]o lu_uodtuoo [_i

75



p--
N

G

©

©

i

C__,

E

C

II

0

N

N

u-

lu_uod×_ l_nbolJ ]o tu_uodmoa [_a



• m

!

_E

u

luouod×_ _nbo[:-I jo lu_uodcuoo 1_

ij,'_ I

E

0

II ,

I

0 I

0

, .

f

I

¢',1
¢',1

?7



,i,/I

• ,iI

i

C_

e,I
M

qJ

,,.VI.II

_u_uodx_ l_nbol_ _o _u_uodwoo I_I

I.

e.o

-8



j

e- II

m

N

m

j
j

j

/
<

j.

S _ m _

/
j

! - ! - II - I - T - l " I - l " T " I " 1 " I " ! " 11-_ [ " | " II- ! " I

.... , ......... . , . • °

lu_uodx_ l_nboId jo luouodtuo_ F_

L.,_,

¢'1 ,_

0

0

II ,

I
tw
0 I

0

I

.-,q



©

©

m

©

II

a.

II

f

f

s

.mp

m tf'_d

I

0

N

II i

0

'- 0

!

_u_uod×_ l_nbol-[ Io _u_uodwon I_

¢xl

o_

80



©

w

> I

_D

L

81



r_

N

G

S---

m

>

,_

,,--s i

>
.. I

e-
L_

lu_uodx_ l_nbo[-[ ]o lu_uodu_oz [_a

82



• i

e-,
N

t..

E

U.

0 --

c-

%

oO

eel

lu_uod×_ l_nbo[_4 ._o :u_uodtuoz [_

83



• m

e_u_I

©

II It
m

II II

f •

l " l " i _ l " ! " T " l " ! " ! " l " ! " 1 " ! " 1 " !

..... o____o_

E

>

>

I

_C

lu_uod×o l_nbolg .lo luouodtuoo I_J

84



*m_11

©

Q_

Q.

m

G
m

°_

"_ II

0

f

i

! - ! " 1[ " _" | - 1 " ! " I " T " ! - ! " ! " | " If¢'_, cq -- _ _ I"_. ,_ u,'_, _- _ ¢-,I -- _

_ _ .._ • _ _ _ _ _ _ _ _ _ _

>

II II II I

• !

II II 11 1
I

¢'-I

u_

II II II

i_.

luauod×a 1_nbo[g jo luauod_uoo [_a_

85



>.,
• N

i

©

CL

.... °°,, ..... o.° .....

_u_uod×_ ]_nbo[=[ 70 lu_uodmoa l_

E
t--

II II II I

II II II I
!

II II II

86



II II II I

04

luouodxo lonbol::t _o luouoduao3 I_._

87



II II II !

II II

°_

lu_uodx_ l_nbol4 70 lu_uodwoo U3_._

88



.m

m

0

©

II II II !

II II II

lu_uod×_ l_nboI:I jo lu_uodwo_ I_I

89



>

J

, m

©

lu_uodx_ 1_nbo[H jo lu_uodwo_ U3_._

I

I
I

90



_" II _

o

r-. -- II

0 0

[] 0

o o

0 0

oo

m

_t '_aqmnu aa_,_

91



0

0 []

Lr_,

o

II _._.

._ 11_o

0.

0

0 o

o o

! - T _ ! - ! " ! _ I "

• _ _ _ _

I " l " !

>I 'JoquJnu _A_

i ,

LT.

92



omml

tN

G .=

a=l_Q

N

°I=t _

oln_

p_

_mJ

rj_

Jl

A

II

m

II

E]

I

rr.

_zx

7_

_T
o

H

0

L_

II

o

w

v_

v_

Lt_

>

L_

_I' II II

L.

93



,Iml

°I.11

0 .=

llmml ._

_qd

CZ] _

..w.
II

.rill

Cx
._. ,(X

L-

u.

,,m
ii

_n

m

)(k)
XD
X_

X_

C_.
.il.

J

II

_n

C_

c_

II II II

II II II

C_. _. C_.

1.1

94



0 '-'

0

I _"
f

I J

T _ [ " ; " I " I " [ " I _ T " T T T _ I T ! " 1 ' I'| " T " T _ ] T 1 " ! " | "1

lu_uod×_ l_nbol.- [ jo _u;_uodwoo l_J

=

95



"0

>.,

0 "

©cq
SaD

©
(J

i
J

J
f

l'l'l'l'l'l'l'l'l'l'l'l'l

£ S S S _ S S S 6 S S 6 6

lu_uod×_ l=nbolH jo lu_uodu_o_ [_.z

_@.__,

_ ,,_=I
=- B._

e,_ ¢',,i

I_,

E
-1

,=_

°

96



CHAPTER 4

RESPONSE OF MULTI-LAYER FLUID CONFIGURATION TO SHORT-DURATION

NON-PERIODIC TIME-DEPENDENT FORCING

4.1 Problem description and stabilit_ considerations

The residual accelerations which occur in a microgravity

environment are generally time-dependent in nature. The

special case of periodic g-jitter was addressed in Chapter 3.

In addition to periodic forcing, residual accelerations may be

of impulse type, due to such causes as station-keeping

maneuvers and astronaut motion. This forcing, though

non-periodic, would certainly still be time-dependent.

This chapter investigates the effect of time-dependent,

non-periodic accelerations on the interface stability of an

idealized fluid configuration. The geometry of the system is

the same as in Chapter 3 (see Figure 3.1). The accelerations

are again oriented normal (in the _ direction) to the
z

interfaces and have a zero initial value condition.

Moderate-duration responses will primarily be investigated.

The three fluids are assumed inviscid, incompressible,

irrotational, and immiscible. Surface tension is a property of

the interfaces and is taken to be constant. The spatial

dependence of the perturbation is considered to be wavelike.

The fluid system is governed by the continuity and Euler

equations. These equations are non-dimensionalized and

linearized, resulting in a system of linear equations with

time-dependent coefficients.
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Two forcing functions will be considered: I) An

exponential ramp followed by exponential decay, and 2) a ramped

step function with both positive and negative values. These

idealized functions were chosen to represent general impulses.

An analytical approach is used to ascertain the asymptotic

(mathematical) stability of the non-autonomous system. This

analysis is presented in Section 4.3, with additional reference

to Appendix 3. Note that the system is non-autonomous due to

the explicit appearance of time in g(t).

The system of first-order differential equations is

integrated numerically utilizing Gear's stiff method 4 in order

to solve for the time-dependent coefficients, which describe

the response of the interfaces. The interface responses are

plotted as a function of time.

The presence of the "short duration" non-periodic body

force functions do not modify the asymptotic stability of the

multi-layer fluid configuration. Interest is in the level of

system disturbance in the presence of the acceleration. Since

the effects of viscosity are not incorporated into the

analysis, the long time behavior of the system, predicted by

the model, is not physically meaningful.
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4.2 Equation development

4.2a Governing equations and non-dimensionalization

The governing equations remain those of conservation of

mass and momentum for an incompressible fluid. Again, the

analysis is inviscid.

of zero mean motion.

after expansion in c.)

Linearization is performed about a state

(Quadratically small terms are neglected

The forcing function is of the form

Gog (t)

where g(t) is non-periodic, and may be represented by a ramp

function, for example. G o is taken to be the peak magnitude of

the forcing function. A positive forcing value is oriented in

the negative _ direction.
z

For this non-periodic forcing case, the non-

dimensionalizations used are:

m
(4.1)

x ,m H x (4.2)

(4.3)

P = PD HGo _ (4.4)
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The non-dimensionalized disturbance governing equations assume

the following form:

v.u' = 0 (4.5)

_p__ - _ -_ p'
PD a_.

(4.6a)

P A

0 = -5 Pmean - p--_ g({) e z (4.6b)

where tildes indicate non-dimensional quantities and primes

denote perturbation values. Equation (4.6b) says the mean

pressure instantaneously adopts a hydrostatic distribution with

a magnitude governed by the instantaneous value of g(t).

Henceforth, the tildes will be dropped, and all quantities are

to be considered non-dimensional. Also, the primes are

dropped.

As in Chapter 3, the pressure and velocity fields were

expanded into a mean and perturbation component. The mean

velocity, as stated previously, equals zero.

An inviscid, irrotational, and incompressible analysis

gives rise to a potential function ( u = g#), which can be

substituted into equation (4.5) to yield Laplace's equation.

This equation is solved in each region, yielding the same

potential functions as in Chapter 3.
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= [ -kz] i (ix+my)_I A(t)ekZ ÷ B(t)e e (4.7)

_2 = [C(t)e-kz] ei(ix+my) (4.8)

: [D(tl.kz]eiClx÷my (4.9)

where A,B,C,D are time-dependent coefficients, k represents

the wave number, where k 2 _ 12 + m 2

The interface shapes are identical to Chapter 3. Repeating

them here, they are

i(ix+my) (4.10)
Feii = z - 1 - eE(t)e

FeIii = z - 0 - cF(t)e i(Ix+my)
(4.11)

4.2b Boundary conditions

Three boundary conditions are imposed at each interface:

(i) the kinematic condition, (2) continuity of the normal

component of the velocity, and (3) a normal force balance

across each interface.

i01



Imposition of the kinematic condition yields the following

relationships between the time-dependent coefficients:

on Feii, -E - kCe -k = 0 (4.12)

on Feiii, -F + kD = 0 (4.13)

The normal component of the velocity must match across each

interface. Applying this condition gives the following

relationships:

on Feii, Ae 2k - B = -C (4.14)

on FeIii, A - B = D (4.15)

The linearized normal force balance across each interface

states:

PD (H2G°); [Plower- Pupper = (4.16)

Note the upper and lower pressures each have a mean and

perturbation component. Substitution into equation (4.16)

follows the same methodology as that discussed in Chapter 3,

resulting in the following system of equations:
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- (l+P21) e k

PDI A(t)
+

(P21-1)e-kpDl ] B(t)

+
(P21-1) g (t)

PDI k2]- -- E(t) = 0

Bo 2

(4.z7)

.

(I-P31)

PDI

+

(I+P31)PDI ] B(t)

+

(I-P31) g(t) k 2 ]
- F(t) =

PDI -_03

0

(4.18)

F.(t) -- k[A(t)e k - B(t)e -k] (4.19)

F(t) - k[A(t) - B(t)] (4.20)

Note that E(t) and F(t) represent the displacement of the

interface due to the perturbation.

This system has thus been reduced to four linear,

non-autonomous differential equations of the form:

103



(4.21)

where X is the unknown

time-dependent coefficients.

is the time-dependent matrix.

vector function containing the

is a constant matrix and _(t)

(See Figure 4.1.)

4.3 As_rmptotic stability

According to Sanchez 23, non-autonomous linear systems of"

eql/ations (in the form of equation (4.21)) are asymptotically

stable if three conditions are satisfied:

(I) the characteristic polynomial of _ is stable,

(2) the matrix _(t) is continuous on 0 s t < - ,

(3) I ° II _(t)ll dt < _ .

The functions which are selected will be shown to satisfy

conditions (2) and (3). Condition (I) is ascertained by

checking the characteristic polynomial of matrix _. For a

stable solution of equation (4.21), the four roots of the

characteristic polynomial of _ must have non-positive real

components (see Appendix 3). Hence, solutions of equation

(4.21) are bounded and stable.

Having ascertained the asymptotic stability of the fluid

configuration, the time response of the interfaces in the
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presence of forcing is investigated. The "short duration,,

non-perlodlc body force functions which have been constructed

do not modify the asymptotic stability of the multi-layer fluid

configuration. Interest is in the level of system disturbance

in the presence of the acceleration, (eg. E(t) and F(t)).

Since the effects of viscosity are not incorporated into the

analysis, the long time behavior of the system is not

physically meaningful. However, long-duration responses will

be examined to investigate asymptotic stability.

Note that for asymptotic stability, the forcing function

must be bounded. That is, if g(t) was chosen to be periodic

(say a cosine function), condition (3) of Sanchez would be

violated, and the system of equations would not be

asymptotically stable. This does not imply that the fluid

configuration is unstable to periodic forcing. In Chapter 3,

it was shown that there exist regions of parametric stability

in the presence of periodic forcing.

4.4 Results

4.4a Solution methodology

The system of flrst-order differential equations,

(4.17-4.20), is integrated via DIVPAG of the IMSL library.

This routine utilizes Gear's method to solve for the

time-dependent coefficients 4 . (See Appendix 9.)
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It was found to be more convenient to represent the fourth

order system in terms of (E,F,E,#). This is accomplished by

differentiating equations (4.19,20) and substituting into

equations (4.17,18) to eliminate A(t) and B(t). This system is

given as follows:

F-[ F - kB8 (_6-87) E (4.23)

where

81

ek(-(I+P_I) - e-k(1"P31 )) PDI

s k
(I+P21) (I+P31) + (P21-1) (l-P31)e-k

- (l+P21)g(t) ek

8 2 - B3 -
PDI

( l+P21) k2e k

(1-P31)Bo 3

k2pDlek

84 - 85 - g(t)e k

So 3 (I-P3 i)
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(P21-1) g (t) k 2

_6 " 87 =
PDI B°2

B 8 =

-2PD1

(I+P21) (l+P31)ek + (P21
-k

-i) (1-p31) e

k2pD1

_9 " _10 " g(t)

Bo 3 (l-P3 I)

The system was integrated for specified non-zero (Eo,Fo)

values with Eo, FO both taken to be zero. The E(t) and F(t)

coefficients define the time-development of the interface. Eo

and Fo are determined from equations (4.12,4.13) where Co=-0.05

and Do-0.05. These values were chosen arbitrarily but are

required to be small to satisfy the restriction to linearity.

The signs were chosen to ensure that both interfaces had the

same direction for their respective velocity fields. This was

decided solely to provide a more realistic physical system.

Different values of C O and DO were investigated with

qualitatively similar results.
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Two time-dependent forcing cases (for tz0) are investigated

and are defined as follows:

i: g(t) = te ('t+l)

2"

g(t)

= 0

= t-i

= 1

= -t+4

R --1

= t-7

- 0

if 0 s t < 1

if 1st< 2

if 2 st< 3

if 3 st< 5
if 5 s t < 6

if 6 s t < 7

if t z 7

Case 1 represents exponential growth followed by

exponential decay. Case 2 represents a ramped step function

with forcing in the positive and negative ez directions. Each

forcing function is shown in Figures (4.11-4.34) as a solid

line. Both cases have an initial value of zero forcing and are

continuous on 0 s t < - ; hence, condition (2) for asymptotic

stability is satisfied.

Condition 3) requires that the integral over infinity of

the absolute value oE the forcing function be finite. For

forcing case I (exponential ramp), the integral is solved by

integration by parts.

f II te(-t+l)
0

lldt - e I < .
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For the step forcing function, case 2, the integral is

subdivided into appropriate time steps and is found to equal 4.

(Note that due to the absolute value in the integral, negative

values of the forcing do not cancel out positives.) Hence, for

both forcing cases the integral is finite, and condition (3) of

sanchez is satisfied.

The time interval extends in the range, 0 s t < to, where

to is a value of time significantly greater than the outer

bound of the forcing function.

The time response of each forcing case is investigated for

parameter values pertinent to a microgravity environment.

k - 0.5, 1.0, 2.0

Bo 2 = 1.0, 0.I

Bo 3 - 1.0(Bo2) , 2.0(Bo 2)

These values correspond to physically realistic configurations

where values of G o range from 10 -3 to 10 -5 * g.ar_h.

Two fluid systems are considered:

i) gas/llquid/gas (P21-P31=0.001225)

2) llquid/liquid/liquid (P21=1.0, P31=1.5)

The reverse of system 2), (P21=1.5, P31=1.0), is investigated

since the forcing cases are directional, and the behavior is

fundamentally different.
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4.4b Numerical results

The shape of the interface is defined by E(t) and F(t),

which are the perturbation displacements. The time response of

E(t) and F(t) are examined for the said parameter space as

described in section (4.4a).

Discussion of zero forcing:

The case of zero forcing was studied to show the time

behavior of E(t)

accelerations.

consistent with

and F(t)

AS expected,

the fact

in the absence of transient

the numerical results were

that the configuration is

asymptotically stable 2_. Results show an oscillatory pattern

that neither grows nor decays exponentially in time (See

Figures (4.2-4.10)). The perturbations are wavelike. Note

that the variation of the interface perturbations in the zero

forcing case is not uniform and sinusoidal. This is due to the

coupling effect of the two interfaces, which have different

velocities according to equations (4.12,4.13). With careful

selection of constants Co and D O for a specific wave number,

the initial velocities of each interface could be set equal

(E(t)mF(t)). In the subcase of E(t)-F(t) and P21=P31 , the

time variation of the perturbations is slnusoldal. Although

equal interface velocities provides a more uniform wave on the

interfaces, it is recognized as a special case. The general

case, with fixed C O and DO and hence unequal E and @, is

investigated in the results.
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Also note that as the wave number increases (Figures

4.2,4.3,4.4), the amplitude of the perturbation becomes larger

in magnitude. This is due to the k dependence of the interface

velocities (equations 4.12,4.13). Moreover, note that the

selection of Co and Do must be such that all quantities do not

violate linear theory.

For a fixed wave number for the zero forcing cases, the

amplitudes of E and F are smaller for the gas�liquid�gas

configuration than for the liquid/liquid/liquid systems

(compare figure 4.9 with 4.3,4.6 where k-l.0). This is due to

decreased dynamical effects from the gas regions. Different

wave numbers provide similar results.

Discussion of impulse forcing (exponential ramp):

Figures 4.11-4.28 show moderate-duratlon responses of each

interface to impulse forcing for the specified parameter space.

Figures 4.11-4.19 correspond to the exponential ramp forcing

case. Note that the forcing function is displayed on the

graphs as a solld llne. Physically, this function simulates

short-duration impulse forcing which might be due to

disturbances such as astronaut motion. By no way do the

selected functions represent the entire class of possible

impulses. It should be pointed out that positive values of the

forcing correspond to accelerations in the negative
z

direction.
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Figure 4.11 represents a liquid/liquid/liquid configuration

with the most dense fluid being on the bottom (P21=l.0,

P31=1.5). The interfaces oscillate in time with a fairly

periodic motion. It is clear that the response is greater in

magnitude for higher values of Bo2(Bo3). Be values are

inversely proportional to surface tension; hence, an increase

in Be is associated with a decrease in the restoring force at

the interfaces. A decreased restoring force will lead to

enhancement of the interface displacement. This trend is

typical throughout the results. Note also that there is an

increase in the period of the perturbation for higher Be

values. Henceforth, discussion will pertain to responses for

Bo2(Bo3)=l.O unless otherwise noted.

Comparing Figure 4.11 with 4.2 (the same fluid system with

no forcing, k=0.5), there is an enhancement of the interface

displacements in the presence of forcing. The upper interface

in the zero forcing case has AE - 0.13 which increased to
max

0.21 in the presence of the ramp forcing. This is a 62%

amplificatlon due to impulse forcing. Likewise, at the lower

interface, AF increased from 0.14 to 0.24 for a 72%

enhancement. (Note: 6E = E - E ).

The wave number in Figure 4.12 is increased to 1.0 while

holding other parameters fixed. Oscillatory motion still

occurs. Comparing with Figure 4.3 (zero forcing for the same

configuration), there is no enhancement at either interface.

In Figure 4.13 (k=2.0), the ramp forcing results in a smaller
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interface displacement as compared to that of the zero forcing

case (Figure 4.4). Recall that positive values of g(t)

A

correspond to accelerations in the negative e z ("downward")

direction. The greatest forcing for the ramp function occurs

between t=0 and t=5. During this time period, the interfaces

for Bo-l.0, particularly the lower interface (F), are

A

accelerating in the positive e z direction. The net

acceleration is smaller than for the zero forcing case, hence

the "negative enhancements" of -30% and -40% at the upper and

lower interfaces, respectively.

Note that in both Figures 4.4 and 4.13, for Bo-0.1 and

A

k-2.0, both interfaces are accelerating in the negative e z

direction during the time period in which the peak of the ramp

forcing occurs. Note again that the ramp function is in the

A

negative e z direction. Thus the net acceleration is greater

for the forced case with amplitude enhancements at upper and

lower interfaces of 15% and 30%, respectively.

Note that the results are contrary for Bo-l.O and Bo=0.1

at this k value of 2.0.

The configuration is inverted for Figures 4.14-4.16, that

is, P21-1.5, p31-1.0. Such a configuration has an unfavorable

density gradient with respect to the direction of the forcing

(ie., a more dense fluid is oriented above a less dense one).

The enhancement of the perturbation amplitude due to forcing

(Figure 4.14) compared to the zero forcing case (Figure 4.5)

for k-0.5 is 67% at the upper interface (E) and 90% at the
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lower interface (F). For k=l.0, the upper and lower interface

amplifications due to ramp forcing are 12% and 11%,

respectively. As with Figure 4.13 (P21=l.O, P31=1.5), the

situation is reversed for k=2.0, with the non-forced case

exhibiting larger perturbation amplitudes. Inspection of the

interfaces for zero forcing (Figure 4.7) at Bo=l.O show

perturbation accelerations in the opposite direction of the

impulse forcing during the critical time period (t_O to t=5).

In general, the enhancements for the unfavorable density

gradient configuration (p21=1.5, p31=l.0) are greater than

those of the favorable one.

Figures 4.17-4.19 correspond to a gas/liquid/gas

configuration. Difference between forced and unforced cases

are most dramatic at k-2.0. In Figure 4.19, there is "negative

enhancement" for the ramp forcing as compared to the zero

forcing (Figure 4.10). The upper interface exhibits little

change, but the lower interface (F) has a 31% decrease in

perturbation amplitude in the forced case. As in the

liquid/liquid/llquid configurations, the cause is an interface

acceleration in the opposite direction of the impulse forcing.

In general, in the presence of ramp forcing the enhancement

is greater at the lower interface. Recall that the forcing is

mono-directional (downward) _ hence there is a true "upper" and

a "lower" interface in terms of the acceleration field.
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Discussion of impulse forcing (bi-directional step):

The step forcing function is employed in Figures 4.20-4.28.

This implies that the acceleration is bi-directional (that is,

an interface may experience a favorable density gradient at one

moment and an unfavorable one at another time in its history).

Figures 4.20-4.22 correspond to a liquid/liquid/liquid

configuration (@21-1.0, P31-1.5). Again it is observed that

high surface tension (low Bo values) relate to minimal

distortion of the interfaces. As with the exponential ramp

forcing function, there is enhancement of perturbation

amplitude at low wave numbers as compared to the zero forcing

cases. In Figure 4.20 (k-0.5) the upper and lower interfaces

are enhanced by 160% and 200%, respectively. This

amplification due to the step function is considerably larger

than the enhancement of the same configuration in the presence

of ramp forcing (Figure 4.11). For k=l.0 (Figure 4.21) there

is slight enhancement of 3% and 10% for interfaces E and F.

Figure 4.22 (k-2.0) shows "negative enhancement". Note on

Figure 4.22, the lower interface response for Bo-l.0 is in

"phase" with the step forcing function but opposite in

direction. During the period of forcing (tml to tm7), the

perturbation is in effect opposed, hence the reduction in

amplitude. The long wavelength perturbations (low k values)

are not "in phase" with the selected forcing functions;

therefore, enhancement occurs even if the interface

acceleration is opposite in direction to the forcing.
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Figures 4.23-4.25 are for the case with the density ratios

reversed and offer qualitatively similar results. Since the

configuration is subjected to bi-directional forcing, there is

no true "upper" or "lower" interface with respect to the

orientation of the forcing. Figure 4.23 (k=0.5) shows

enhancements of 215% and 170% for interfaces E and F,

respectively. For k=l.0 (Figure 4.24), the amplification of E

as compared to the zero forcing case is 17% and for F, 21%.

For k-2.0 (Figure 4.25), there is "negative enhancement" at"

both interfaces. Again, note the "phasing" between the lower

interface response and the period of the forcing.

It should be pointed out that the greatest enhancement in

perturbation amplitude for the bi-directional forcing occurs at

the interface with P21(P31)-l.5 rather than 1.0. That is, the

interface with a density difference across it experiences

greater enhancement. In general, this trend is typical for

Figures 4.20-4.25.

The gas/llquid/gas configuration in the presence of step

function forcing is represented by Figures 4.26-4.28. In

general, such configurations have more uniform oscillations.

As occurred with exponential ramp forcing, it is the k=2.0

configuration in which differences between the forced and

unforced case are most dramatic. For k-2.0 in the forced case

(Figure 4.28), there is an increase in the amplitude of the

interfaces: E (25%) and F (32%). Recall that for all other

cases with k=2.0, there is "negative enhancement". The
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,,phasing" between the interface response and the forcing period

is the critical factor. Note on Figure 4.28, when the forcing

is clipped (t=7), both interfaces are perturbed at a large

amplitude, hence a "positive enhancement". Comparing with

Figure 4.25, both perturbations have small displacements at

t=7; the oscillation is in "phase" with the forcing period.

Therefore, this case has "negative enhancement". At low k

values (long wavelengths), for the selected forcing functions,

phasing does not occur; thus in general, the impulse forcing

enhances the perturbation.

The effect of unequal Bo values is addressed in Figures

4.29-31, where in each case Bo3=2*Bo 2. That is, the surface

tension of the bottom interface is half that of the top. Note

that the case of equal Bo values appears on the graphs for

purposes of comparison. The cases involving the doubling of

one of the Bo values show an enhancement of the interface

displacement as compared to the equal Bo case. In Figure

4.29, the amplification for Bo3=2*Bo 2 is 28% greater at E and

100% larger at F as compared to the equal Bo case. Figure 4.30

shows a different configuration but similar results. The effect

of doubling Bo 3 actually has a slight "negative enhancement"

(-1%) on interface E, but a 100% amplification on F. Figure

4.31 represents a gas/liquld/gas configuration subjected to

ramp forcing. Doubling Bo 3 corresponds to amplifications of

26% on interface E and 58% on interface F. In all cases of

Bo3-2*Bo2, the greatest enhancement occurs on interface F.
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Doubling the Bo value on this interface corresponds to halving

its surface tension. It is of interest that in the

liquid/liquid/liquid configurations (Figures 4.29,4.30),

doubling the Bo value of an interface corresponds to a 100%

amplification of that interface.

It has been discussed that consideration of "long-duration"

responses is not physically realistic due to the absence of

viscosity. Surely viscous effects would play an important

damping role (ie., in time, we would expect that long after the

forcing dies out, the perturbation amplitude should be damped).

For an inviscld system the perturbations, even in the absence

of any forcing, continue to oscillate ad infinitum. Therefore,

there is no physical relevance to the long-duration response.

However, the extension of calculations out to these larger

times yielded numerical results which are consistent with the

known (mathematical) asymptotic stability of the configuration.

Figures 4.32-4.34 display long-duratlon responses for

various parameters. The two figures in each left column

represent zero forcing. The oscillatory nature of the

perturbation is apparent. The two figures in the right column

represent the same configuration in the presence of the

designated forcing. Although all three figures show an

enhancement in the amplitude in the case of forcing, this is

not to suggest that impulse forcing causes enhancement of the

zero forcing case for all parameter space. (Recall the ramp

forcing case for k-2.0 where negative enhancements occur.) The
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period of the oscillation in the forced cases is approximately

eclual to the period of the zero forcing case. During this time

period (0<t<200), the response of the interfaces is not growing

exponentially in time. Nondimensional time periods up to

t=1000 were examined with similar results.

In general, the presence of impulse forcing causes

enhancement of interface displacement (in the case of low k,

long wavelength disturbances). Depending on the phasing

between the oscillation of the interface and the period of the

forcing function, a reduction in interface amplitude may occur

for some parameter space, particularly at higher wave numbers.

The interface behavior for a given configuration may be

very different for various impulse accelerations. Recall that

the displacements for the gas/liquid/gas configuration at k=2.0

were smaller in the presence of ramp forcing but were enhanced

when subjected to step forcing. The possibility of enhancement

could cause adverse effects on materials processing

applicationm.
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CHAPTER 5

CONCLUSIONS

The effect of microgravity environment accelerations on

the behavior of a multi-layered idealized fluid configuration

has been investigated. The analysis was linear, and each fluid

region was considered inviscid, incompressible, irrotational,

and immiscible. A normal mode approach was taken with regard

to the spatial variables.

As a preliminary study, the stability of the configuration

was investigated in the presence of constant acceleration

fields. Dimensional equation development resulted in a

dispersion relation. The nature of the roots of the dispersion

relation determined the stability of the configuration.

Three parameters were studied, including the wave number

of the perturbation, height of the middle layer, and the value

of the constant forcing. The stability regimes of these

parameters were investigated for various configurations

involving air, water, and silicone oil.

The results show that the configuration is most stable to

larger values of the wave number. This implies that the fluid

system is susceptible to long wavelength perturbations. The

change in height of the middle layer has a negligible effect if

the quantity h/A is greater or on the order of one. For values

of h/A < O(1), faster growing instabilities are associated with

smaller values of h/A.
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Results indicate that as the constant forcing value is

decreased, the configuration becomes more stable. The limit

case of zero forcing was investigated and found to be stable

for all parameter values. The zero mean gravity state served

as the basis for the ensuing time-dependent cases.

For the periodic case, the equations were

non-dimensionalized. Floquet theory was applied to the system

of equations (3.29-3.32) resulting in an infinite set of

algebraic equations. A truncation was made, and the problem

was posed as a generalized elgenvalue problem. Solutions to

the eigensystem determined the stability of the configuration.

Six non-dimensional parameters were investigated: the

Bond type number at each interface (Bo2,Bo3), the density

ratios of the outer to middle layer (P21,P31) , the Froude type

number (Fr), and the wave number (k). Ranges of values studied

are pertinent to a microgravity environment and satisfy

conditions of linearity. Results indicate several trends

involving these parameters.

As Bo values are increased, the configuration becomes more

unstable. That is, the unstable range encompasses a wider

range of wave numbers. This trend can be interpreted as

resulting from a decrease in the surface tension (inversely

proportional to Bo) at the interfaces which expectedly would be

more unstable. For unequal Bo values (Bo 3- 2,Bo2), the range

of unstable wave numbers is even greater.

A density difference parameter (PDI) is expressed in

155



terms of P21 and P31" Essentially it equals the average of the

density differences across each interface. In general, as PDI

increases, the configuration becomes more unstable. This trend

corresponds within certain "families" of configurations (for

example, gas/liquid/liquid or liquid/liquid/liquid, etc.)

An decrease in the Froude type parameter (inversely

proportional to the square of the forcing frequency)

corresponds to larger bands of unstable wave numbers. Hence,

the configuration is more unstable to high frequency forcing.

The multi-layered fluid system was found to be "more

unstable" than the one interface configuration. That is, the

range of unstable wave numbers is smaller in the one interface

case. In particular, one area of contrast was in the very low

k region where regions of stability were present for the one

interface case.

For the non-periodic forcing case, the non-dimensionalized

equations resulted in four ordinary differential equations in

time. The system was integrated numerically, and the time

responses of the interfaces were obtained.

Two short-duratlon impulse type functions were imposed on

the system. Asymptotic stability of the fluid system in the

presence of short-duration accelerations was ascertained via

mathematical analysis, and the numerical results were

consistent. The interfaces respond in a wavelike fashion, but

do not grow exponentially in time, providing that certain

conditions on the forcing function are satisfied.
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In general, the presence of an impulse causes enhancement

of interface perturbation amplitudes Cfor long wavelength

perturbations) as compared to the zero forcing case. For

higher wave numbers, different impulse accelerations can affect

a given configuration quite differently. If the oscillation of

the perturbation has "phase correspondence" with the period of

the forcing, a reduction in interface amplitude may occur.

Perturbation enhancement is generally greater in the presence

of the bi-directional step forcing as compared to the

one-directional ramp forcing. While the wave is not growing

exponentially in time, enhancement could cause undesired

consequences for an experiment. For example, a solidification

experiment could be adversely affected by the presence of

impulse forcing.

The results of the idealized fluid system are

qualitatively relevant to specific configuration geometries.

For example, it was determined that the multi-layered case is

generally unstable for low wave numbers (long wavelengths).

Certain float zone processing techniques involve a fluid column

which is multi-layered. Such a configuration would need to

avoid long wavelength perturbations. In general, it was found

that the multi-layered configuration has a wider band of

unstable wavelengths than the single interface fluid system.

Hence, any space-processlng geometry involving multiple layers

of fluids would be more susceptible to instabilities than a one

interface configuration.
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Additionally, the subharmonic case is relevant to

space-processing applications. It was discovered that the

fluid system is most unstable at low values of Fr (inversely

proportional to the forcing frequency). The investigation into

the subharmonic case showed that at low Fr values, the

subharmonic (A=I/2) occurs at higher wave numbers.

This study involves values of non-dimenslonal parameters

which are relevant to a microgravity environment.

Configurations involving fluids of specific interest may be

investigated. For example, a typical configuration may have

the following dimensional parameters: pD = 0.8 g/cm 3, 7ii =

¥11I" 25 dynes/cm, G o- 10 -3* ge,r_h, _f= 0.5 s -I, and H= 4.0

cm. These values, according to the definition of the non-

dimensional parameters, correspond to values of Fr=l.54 and

Bo2(Bo3)-O.03. The configuration parameters are typical of

what may be expected in microgravity processing applications.

Fluid systems of specific interest may be investigated in such

a manner.

The multi-layer configuration utilized in this study was

idealized. In an actual space-processing application, the

fluid system would be bounded in space; the boundary

conditlonm pertinent to the container would need to be

considered. A suggested area of future investigation is to

consider finite configurations.
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APPENDIX 1

Utilization of WVNET Resources

The numerical solution and graphical representation of the

present analytical problem requires a well-integrated host of

computer resources. The CMS system was accessed via WVNET on a

VT320 terminal. A remote site at the Engineering Sciences

building was used.

AI.I Numerical Results

The numerical results for Chapters 2,3,and 4 were obtained

by accessing several routines from the IMSL library1_ Programs

which were utilized are found in Appendices 4-9. One solution,

in the case of periodic forcing, involved the eigenvalues of a

very large complex matrix system. An enormous amount of

storage space was required for computation. Upon request,

WVNET increased the storage capacity from 4M to 12M. This was

sufficient to run the programs. Alternatively, temporary disks

could be accessed to provide the necessary space. The

following steps were taken to declare the temporary disk space:

TDSK 192 DISK B CYL 15

FORMAT 192 B

RELEASE A

RELEASE B

ACCESS 192 A

ACCESS 191 B
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These steps free 15 spare cylinders of disk space. The

computer now interprets this disk as the A disk and the

original disk as the B disk. Hence, to bring files over to the

temporary diskspace, the following command must be used:

COPY filename FORTRANB filename FORTRANA

Once a data file is created, the file can be transferred back

to the permanent storage using the following command:

COPY filename filetype A filename filetype B

This file is now saved in the permanent directory. After

logging off, the temporary disk memory will be destroyed. This

method was solely used prior to the increase of storage space.

A typical session using the expanded memory is as follows:

(After logging on to CMS via WVNET.)

DEF STOR 12M

IPL CMS

GETDISK IMSL

FORTVS2 filename

GLOBAL TXTLIB VSF2FORT CMSLIB IMSLI IMSL2

GLOBAL LOADLIB VSF2LOAD

LOAD filename

START
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Execution will create the desired datafile.

AI.2 Graphical Results

Two options were explored for graphing the results.

Initially the data was downloaded to a diskette via Kermit,

which in turn was plotted using Lotus/123 graphics package on a

Zenith DS computer. While the output was satisfactory, it was

inconvenient and time-consuming to change terminal sites.

The second, and preferred, option was to access CMS

directly through a WVNET line connected to a Macintosh II PC.

This was accomplished via VersaTerm and VersaTerm Pro

communications. The program calling IMSL routines was run in

the same manner as with a VT320. The data was then transferred

to a SAS/Graph routine emulating TEK4014 device, which

presented the results graphically. A typical graphing session

is as follows:

COPY datafilename filetype A FOR017 LISTING A

SAS filename oZ sas program

TEK4014

A typical SAS/Graph program is as follows:

CMS FILEDEF FOR017 DISK FOR017 LISTING;

DATA;

INFILE FOR017;
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INPUT X Y BO;

PROCGPLOT;

PLOT X*Y=BO;

SYMBOL1 I=SPLINE L=I;

SYMBOL2 I=SPLINE L=21;

SYMBOL3 I=SPLINE L=20;

SYMBOL4 I=SPLINE LJ22 ;

This routine will take three columns of data as input and

graphically sort according to equal values of Bo.

The plots are converted to MacDraw files

hardcopies were obtained from MacDraw I and

packages. The advantages to this option are the one-terminal

site capabilities as well as good resolution.

from which

II graphic
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Utilization of WVNET Resources:

Method 1'

VT320 Terminal

- CMS system
accessed via

WVNET

DZPORC routine

from IMSL library

called to program

data output

/

/

/

/

/

/

/

/

/

/

/

I

I

I

I

/

Zenith DS PC

data downloaded to

diskette via Kermit

graphical results

using Lotus/123

graphics package

- satisfactory output

- inconvenient and time-consuming to change sites
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- method 2:

Macintosh II PC

CMS system accessed
via WVNET

IMSL routine
called

output data transferred
to SAS/Graph routine
emulating TEK4014

device

,!
graphs converted to
MacDraw files for

hardcopies

- option of choice
- one-terminal site capabilities
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APPENDIX 2

One Interface S[stem of Equations

The fluid system and analysis is the same as for the

multi-layer configuration except that there is only one

interface. The upper region is subscripted by a 2 and the

lower region is subscripted by a i.

The same governing equations are utilized with the

following non-dimensionalization:

CA2.1)u_- (Go/W f) -

x-¢ Gc/_ 2) (A2.2)

(A2.3)

p = po(ao/_f) 2_ (A2.4)

The interface is given by:

i(Ix+my)
Fe - z - 0 - cC(t)e (A2.5)
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The velocity potentials in each region are described by:

#i = [A(t)ekZ ] ei(Ix+my)

#2 = [B(t)e-kZ ] ei(Ix+my)

(A2.6)

(A2.7)

(Note that tildes have been dropped.

non-dimensional.)

All quantities are

Application of boundary conditions is similar to that of

the multi-layer configuration. This system reduces to two

linear differential equations which are solved using Floquet

analysis. The one interface system is as follows:

(_+in)C n - kA n _ 0 (A2.8)

k2pDI

(I-P21) + + cn 0(l+iniA. (Cn- 1 Cn+l) = (A2.9)

2(i+p21) Q(I+P21)

where PDI =

(l-p21)
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Q

PDIGo 3 - G_.___o_o2

7_f 4 = B°[ H_f2 ]
(A2.10)

but there is no H, thus the lengthscale (Go/_f2) is used.

2
•". Q - Bo(1.0) (A2.11)

The problem can now be posed as an eigensystem which is

truncated and solved numerically.
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APPENDIX 3

Stability of Characteristic Equation

According to condition (i) of Sanchez 23 (Section 4.3), the

characteristic polynomial of _ must be stable (ie. the four

roots of the polynomial must have non-positive real components).

The polynomial is of the form

A 4 + aA 2 + b = 0 or s2 + as + b = 0 (s=A 2) (A3.1)

-a ± _a2 - 4 b

s - (A3.2)
2

For guaranteed non-positlve real components:

i) a • 0

ii) b > 0

iii) a2 > 4 b

Conditions i) and li) are satisfied simply by the signs of

their components. Condition iii) requires that the following

inequality must hold true
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rl (r2+r 3 )
2

>
r4r5r 5 (A3.3)

where

r I
"k3 PDI

-(l+P21)(l+P31)ek + (P21-1) (l-P31) e-k

r 2
. -(1-P31)e-k + (l+P31)ek

B°2 PD1

r 3 -
(1-P21)e-k + (l+P21)ek

B°3 PD1

r 4 im

2
4 PD1

e k
-(l+P21) (1+P31) +(P21-1) (1-P31)e-k

r 5 - (_ek + e "k) r 6 =

k 6

Bo 2 Bo 3

171



As an analytical check, condition iii) was investigated

for p " P21 = P31' B°2=B°3" The following requirement of

stability was obtained:

0 > -4p - (1-p)2e -2k (A3.4)

This is true for all values of p.

Using a root finder, the roots of the characteristfc

polynomial were determined for the other parameter cases, and

all roots had non-posltive real components. Hence, condition

(I) of Sanchez is satlsified.
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APPENDIX 4

Dispersion Solution - Chap 2

This program solves the dispersion relation which was

derived in Chapter 2 of the thesis (equation (2.19)). The

dispersion relation is a fourth order polynomial, the roots of

which are the propagation speeds of the disturbance.

An IMSL routine, 'DZPORC', is called. This routine is a

complex root finder. Solutions are obtained for the various

configurations of interest.
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C THIS IS IN FILE: 'LAYERS FORTRAN'

C

C THIS ROUTINE SOLVES THE DISPERSION RELATION FOR THE CASE OF
C CONSTANT GRAVITATIONAL FIELD.

C THE DISPERSION RELATION IS A FOURTH ORDER POLYNOMIAL. THE
C FOUR ROOTS ARE COMPLEX AND ARE SOLVED BY CALLING A ROOT

C FINDER ROUTINE, 'DZPORC', FROM THE IMSL LIBRARY.
C

C SOLUTIONS ARE OBTAINED FOR THE FOUR CONFIGURATION CASES ACROSS

C THE PARAMETER SPACE OF INTEREST.
C

C
C

C
C
C

C
C

C
C
C
C

C
C

C
C
C
C
C
C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION DEN(3),GAM(3)

REAL*8 COEFF(5),ACFS(5)

COMPLEX*I6 ROOT(4)

COMMON/DAT/R1,R2,R3,AH,AG2,AG3,AGRAV,AWN
NDEG-4

G0-980.0D0

OPEN(UNIT-14,STATUS-'NEW',FILE-'FOR014')

DENSITIES OF FLUIDS

DEN(1)-I.0DO
DEN(2)-0.96D0
DEN(3)-0.001225DO

SURFACE TENSIONS

GAM(1)-72.0DO
GAM(2)-40.0D0
GAM(3)-25.0DO

DO CASES

C CASE 1: AIR/SILICON OIL/WATER

R2-DEN(3)

RI-DEN(2)
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C

C

C

C

4O
C

C

80

90

100

C

C

C CASE

C

R3=DEN(1)

AG2=GAM(3)

AG3=GAM(2)

WRITE(14,*)'AIR OVER SILICON OIL OVER WATER'

WRITE(14,*)'DEN2=',R2

WRITE(14,*)'DENI=',RI

WRITE(14,*)'DEN3=',R3

WRITE(14,*)'SUR TEN2=',AG2,'SUR TEN3=',AG3

DO i00 I3=I,5

DO 90 I2"1,6

DO 80 Ii'i,7

AH=0.5D0+ (I3-i) *0.25D0
AGRAV,.G0* (I. 0D0- (I2-i) *0.2D0)

AWN-0.25D0+ (If-l) *0.5D0

WRITE(14,*)'H'',AH,'GRAV=',AGRAV

CALL DISP(ACFS)

DO 40 I-1,5

COEFF(I)-ACFS(I)
CONTINUE

CALL DZPORC(NDEG,COEFF,ROOT)

WRITE (14,

WRITE (14 ,

WRITE (14 ,

WRITE (14,
CONTINUE

CONTINUE
CONTINUE

*)'RTI'',ROOT(1)

*)'RT2"',ROOT(2)

*)'RT3"',ROOT(3)

*)'RT4"',ROOT(4)

2 : AIR/WATER/AIR
R2-DE. (_)
RI-DEN(1)
R3-DEH (3)

AG3-GAM (1)

WRITE(14,*)' '

WRITE(14,*)' '

WRITE(14,*)'AIR OVER WATER OVER AIR'

WRITE(14,*)'DEN2=',R2

WRITE(14,*)'DENl"',R1
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C

C

50

C

C

180

190
200

C

C

C CASE

C

C

3:

WRITE(14,*)'DEN3=',R3

WRITE(14,*)'SUR TEN2=',AG2,'SUR TEN3='

DO 200 J3=i,5

DO 190 J2-i,6

DO 180 Jl=l,7

AH-0.5D0+ (J3-1) *0.25D0

AGRAV=G0* (I. 0D0- (J2-1) *0.2D0)

AWN=0.25D0+ (J1-1) *0.5D0

WRITE(14,*)'H=',AH,'GRAV-',AGRAV
WRITE(14,*)'WAVE NUMBER-',AWN

CALL DISP(ACFS)

DO 50 Jnl,5

COEFF (J) -ACFS (J)
CONTINUE

CALL DZPORC(NDEG,COEFF,ROOT)

WRITE (14, *) 'RTI-', ROOT (1)

WRITE (14, *) 'RT2-', ROOT (2)

WRITE(14,*) 'RT3-' ,ROOT(3)

WRITE (14, * ) 'RT4- ', ROOT (4 )
CONTINUE

CONTINUE

CONTINUE

,AG3

AIR/SILICON OIL/AIR

R2-DEN (3 )
RI-DEN (2)

R3-DEN (3 )

AG2 =GAM (3 )

WRITE(14,*)' '

WRITE(14,*)' '
WRITE(14,*)'AIR OVER SILICON OIL OVER AIR'

WRITE(14,*)'DEN2'',R2

WRITE(14,*}'DEN1n',R1

WRITE(14,*)'DEN3"',R3

WRITE(14,*)'SUR TEN2"',AG2,'SUR TEN3'',AG3

DO 300 K3_1,5

DO 290 K2"1,6
DO 280 K1"1,7

AHnO.SD0+(K3-1)*0.25D0

AGRAV'G0*(1.0D0-(K2-1)*0.2D0)
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C

6O

C

C

280

290

300

C

C
C CASE

C

C

C

70

C

AWN=0.25D0+(KI-I)*0.SD0

WRITE(14,,),H=',AH,'GRAV=',A GRAy

WRITE(14,*)'WAVE NUMBER=',AWN

CALL DISP(ACFS)

DO 60 K-1,5

CONTINUE

CALL DZPORC(NDEG,COEFF,ROOT)

WRITE( 14, *) 'RTI-', ROOT (1)
WRITE(14,*)'RT2-',ROOT(2)

WRITE(14,*)'RT3-',ROOT(3)

WRITE(14,*)'RT4-',ROOT(4)

CONTINUE

CONTINUE

CONTINUE

4: WATER/SILICON OIL/WATER

R2-DEN(1)

RI-DEN(2)

R3-DEN(1)

AG2-GAM(2)

AG3-GAM(2)

WRITE(14,*) ' '

WRITE(14,*)' '
WRITE (14, *) 'WATER OVER

WRITE(14,*)'DEN2"',R2

WRITE(14,*)'DENI"',R1

WRITE(14,*)'DEN3"',R3

SILICON OIL OVER WATER'

DO 400 L3-I,5

DO 390 L2"1,6

DO 380 LI-I,7

AH'0.5DO+ (L3-1) *0.25D0
AGRAV"GO* (i. ODO- (L2-1) *0.2DO)

AWN"0.25D0+ (LI-1) *0.5D0

WRITE(14,*)'H-',AH,'GRAV'',AGRAV

WRITE(14,*)'WAVE NUMBER-',AWN

CALL DISP(ACFS)

DO 70 L-1,5

COEFF(L)-ACFS(L)
CONTINUE
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C

38O

390

400

C

C

C

C

C

C

C

C

C

C

CALL DZPORC(NDEG,COEFF,ROOT)

WRITE (14,*) 'RTI=' ,ROOT(l)

WRITE (14,*) 'RT2--', ROOT (2)

WRITE (14, *) 'RT3=', ROOT (3)

WRITE (14, *) 'RT4=', ROOT (4)
CONTINUE

CONTINUE

CONTINUE

CLOSE(14)
STOP

END

SUBROUTINE DISP(ACFS)
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION ACFS(5)

COMMON/DAT/R1,R2,R3,AH,AG2,AG3,AGRAV,AWN

COEFFICIENTS

A-RI+R3

B-((AGRAV/AWN)*(RI-R3))-(AG3*AWN)
C-RI+R2

D-((AGRAV/AWN)*(R2-RI))-(AG2*AWN)
W-R2-RI

X-((AGRAV/AWN)*(R2-RI))-(AG2*AWN)
Y=RI-R3

Z-((AGRAV/AWN) * (R3-RI)) + (AG3*AWN)

ACFS (i) - (X+Z) + (B*D*EXP (2.0D0 *AWN*AH) )

ACFS (2) -0.0D0

ACFS (3) - (W,Z) + (X'Y) + ((A*D+B*C) *EXP (2. OD0*AWN*AH) )

ACFS (4) -0. ODO

ACFS (5) --(W,Y) + (A*C*EXP (2.0D0*AWN*AH) )

RETURN

END
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APPENDIX 5

Generalized Ei@envalue Solution - Chap 3

This program solves the large, sparse, generalized

eigenvalue problem which is represented by equation (3.41)

of Chapter 3 (periodic forcing case). Truncation was made at

N=1251 giving rise to an eigensystem of 204 equations.

The complex elgenvalues are determined using 'DGVLCG' of

the IMSL library. The eigenvalues are the Floquet exponents of

equations (3.35-3.38). Following computation of the

eigenvalues, only the largest real component will be extracted

for the data set. This represents the fastest growing Floquet

exponent.
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C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM: NEWPER FORTRAN

3/21/90

RE: PERIODIC MULTI-SLAB ANALYSIS

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED

EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED

SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A
MICROGRAVITY ENVIRONMENT.

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

FLOQUET THEORY WAS APPLIED, GENERATING A SYSTEM OF AN INFINITE
NUMBER OF LINEAR EQUATIONS. THIS SYSTEM WAS TRUNCATED AT 25

WHICH RESULTS IN 204 EQUATIONS.

SINCE THE PROBLEM IS ESSENTIALLY A GENERALIZED COMPLEX

EIGENSYSTEM OF THE FORM, A*Z=W*B*Z, THE ROUTINE 'DGVLCG' OF THE
IMSL LIBRARY WILL BE CALLED TO SOLVE FOR THE EIGENVALUES.

THE EIGENVALUES(W) ARE THE FLOQUET EXPONENTS OF THE SYSTEM.

FOLLOWING COMPUTATION OF THE EIGENVALUES, THE LARGEST POSITIVE
COMPONENT IS EXTRACTED FROM EACH ITERATION OF VARIOUS PARA.METER_
THIS COMPONENT WILL DETERMINE THE STABILITY OF THE CONFIGURATIO}:.

PARAMETER (N-204, NG-51)

IMPLICIT REAL*8 (A-H, O-Z)
COMPLEX*I6 A(N,N),BLK(4,4),B(N,N)

COMPLEX*I6 ALPHA(N), BETA(N), EVAL(N)

COMPLEX* 16 YII,YI2, Y13, Y14, Y21, Y22, Y23, Y24, Y31, Y32, Y33, Y34
COMPLEX* 16 Y41,Y42, Y43 ,Y44, Y1, Y2, YB, YT, YDIA

REAL RECO(4) ,Q(4)
REAL AK

EXTERNAL DGVLCG

COMMON /WORKSP/ RWKSP

REAL RWKSP(332948 )

CALL IWKIN(332948)

LDA-N

LDB-N

OPEN(UNIT-16,STATUS='NEW',FILE='FOR016')

FILLING THE A AND B MATRICES WITH ZEROES PRIOR TO LOADING
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C

C

C
C
C
C
C
C
C
C

C

C
C
C

C

C
C
C
C

C

THE NON-ZERO TERMS

DO 5 II=I,N

DO 4 JJ'.I,N

A (II, JJ) =(0.0D0,0.0D0)

B(II,JJ)--(0.0D0,0.0D0)
CONTINUE

CONTINUE

THIS IS THE PARAMETER BLOCK. LOOPS ARE PERFORMED ON THE BOND

NUMBERS (BO2,BO3), THE FROUDE NUMBER (FR), AND THE WAVE NUMBER

(K).VALUES OF THE DENSITY RATIOS (RH21,RM31) ARE SPECIFIED.

RH21"IO.0D0

RH31=O.OOI225D0

RHDI-(DABS(RH21-1.OD0)+DABS(RH31-1.0DO))/2.0D0

DO 500 NJmO,O

DO 400 NTmO,O

DO 300 IY'l,l
WN_O.ODO

DO 200 IX_1,50
WN'WN+0.1DO

FR_O.OIDO

DO 160 NP"O,3
NPP"NP+I

BO2"IO.ODO**(-NP)
BO3=BO2

CALCULATING NON-ZERO ELEMENTS THAT WILL BE INSERTED INTO

MATRICES A AND B.

DO 20 MmI,NG

SUB_((NG*I.0DO)+I.0DO)/2.0DO

CF'(M*I.0D0)-SUB

X13"-1.0DO*WN*DEXP(WN)

X14-1.0DO*WN*DEXP(-I.OD0*WN)
X23"-l.0D0*WN
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C
C
C

X24=1. ODO*WN

X31N=FR*WN*WN*DEXP (-1 •0DO*WN) * (RHD1)

X31D=BO2* (RH21+ 1. ODO )

X31=X31N/X31D

X34= ( (I. 0D0-RH21) *DEXP(-2.0DO*WN) )/ (i. 0DO+RH2 I)

X42=(-FR*WN*WN* (RHDI))/(BO3* (i. OD0+RH31) )

X43-, (i. 0D0-RH3 I) / (i. 0D0+R_3 i)

XB=-I. 0D0* (i. 0D0-RH31) / (i. 0D0+RH31)

XT=(DEXP(-2.0D0*WN) * (RH21-1.0D0))/(RH21+I. 0D0)

Xl= (FR* (l. 0D0-RH2 I) )/( (i. 0DO+RH2 I) *2.0DO*DEXP (WN))
X2-FR* (I. 0DO-RH31) / (2.0D0* (I. 0D0+RH3 i) )
X34M-X34*CF

X43M-X43*CF

ELEMENTS OF 4X4 SUBMATRIX FOR A GIVEN NG.

XZER-0.0D0

Yll-DCMPLX(XZER,CF)

BLK(I,I)-YII
Y12-DCMPLX(XZER,XZER)

BLK(I,2)-Y12
YI3-DCMPLX(X13,XZER)

BLK(1,3)-Y13
Y14=DCMPLX(X14,XZER)

BLK(1,4)-Y14
Y21-DCMPLX(XZER,XZER)

BLK(2,1)-Y21
Y22-DCMPLX(XZER,CF)

BLK(2,2)-Y22

Y23-DCMPLX(X23,XZER)

BLK(2,3)-Y23
¥24-DCMPLX(X24,XZER)

BLK(2,4)I¥24
Y31-DCMPLX(X31,XZER)

BLK(3, i)1¥31
¥32-DCMPLX (XZER, XZER)

BLK(3,2) 1¥32
Y331DCMPLX(XZER,CF)

BLK(3,3)m¥33
¥341DCMPLX(XZER,X34)

BLK(3,4)_¥34
¥41-DCMPLX(XZER,XZER)

BLK(4,1)-Y41

Y42-DCMPLX(X42,XZER)

BLK(4,2)-¥42

¥43-DCMPLX(XZER,X43)

BLK(4,3)-¥43

¥44-DCMPLX(XZER,CF)
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C
C
C

8

10

15

20

BLK(4,4)=Y44

LOADING NON-ZERO TERMS IN MATRIX A

YI=DCMPLX (XI, XZER)

Y2=DCMPLX (X2, XZER)

NL,, (4*M) -3

NU=, (4*M)
KI-O

DO 15 I-NL,NU
K2".O

KI-KI+I

DO 10 J..NL,NU
K2-K2+l

A(I,J) -BLK(KI, K2)

IF(M.EQ.I.OR.M.EQ.NG) GO TO 8

IF(KI.EQ. 3) THEN
JB_I-6

JFnI+2

IPI-I+I

JFP"JF+ 1

JBP-JB+I

A(I,JF}-¥1
A(I,JB)-¥1

A(IP1,JFP)-¥2

A(IPI,JBP)-¥2
ELSE

END IF

GO TO 10

IF(M.EQ. 1.AND.K1.EQ. 3) THEN
JF-I+2
IPI-I+I

JFP"JF+I

A(I,JF)-¥1

A (IP1, JFP) -Y2
ELSE

END IF

IF (M. EQ. NG. AND. K1. EQ. 3 )THEN
JB"I-6

IPI"I+I

JBP'JB+I

A(I,JB)-YI

A(IPI,JBP)-Y2
ELSE
END IF

CONTINUE

CONTINUE

CONTINUE
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C
C
C
C

LOADING NON-ZEROTERMSOF MATRIX B

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

50

25

30

YB=DCMPLX (XB, XZER)

YT-DCMPLX (XT, XZER)
XN I,.-I. 0DO

YDIA-DCMPLX (XN1, XZER)
NCT-0

DO 30 L_I,NG

DO 25 MOP_I,4
NCT=NCT+ 1

B (NCT, NCT) =YDIA
IF (MOP. EQ. 4 )THEN

NMI=NCT-1

B (NCT, NM1) =YB

B (NM1, NCT) "YT
ELSE

END IF

CONTINUE

CONTINUE

CALL DGVLCG (N, A, LDA, B, LDB, ALPHA, BETA)

PROGRAM DGVLCG CALCULATES THE EIGENVALUES OF A GENERALIZED

COMPLEX EIGENSYSTEM.

THE EIGENVALUE (EVAL(N)) IS COMPUTED BY DIVIDING COMPLEX

VECTORS ALPHA(N} BY BETA(N).

THE EIGENVALUES ARE SWEPT OUT IN ORDER OF INCREASING SIZE OF

THE REAL COMPONENT. THUS TO EXTRACT THAT VALUE, ONE NEEDS
ONLY THE N-TH REAL VALUE OF EVAL.

THIS LARGEST REAL COMPONENT (RECO), IS THEN SENT TO A DATA
FILE FOR VARIOUS PARAMETER VARIATIONS.

2

160

200

300

DO 50 IM-I,N

EVAL (IM) -ALPHA (IM) / BETA (IM)
CONTINUE

RECO (NPP} -EVAL (N)

WRITE (16,2) WN, RECO (NPP) ,BO2

FORMAT(IX, FS. 2,El0.3, F6.3)
CONTINUE

CONTINUE

CONTINUE
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400
500

C
C

CONTINUE

CONTINUE

CLOSE(I_)
STOP

END
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APPENDIX 6

Standard Ei_envalue Problem - Chap 3

This program converts the generalized eigenvalue problem

(of form _ X - A _ X) to the standard form of _ X = A X. This

requires premultiplication of both sides by B -1 using IMSL

routine 'DLINGC'.

The eigenvalues are calculated using routine 'DEVLCG'

which utilizes a different algorithm than the generalized

eigenvalue problem. The Floquet exponents as determined by

both methods will be compared to check accuracy.

186



C PROGRAM 'LONG'

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C
C

C

C

C

C

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED

EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED

SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A

MICROGRAVITY ENVIRONMENT.

THE PROBLEM CAN BE CONVERTED FROM A GENERALIZED TO A REGULAR

EIGENVALUE PROBLEM BY PREMULTIPLYING BOTH SIDES BY BINV. THIS

CAN BE CARRIED OUT BY IMPLEMENTING IMSL ROUTINES 'DLINCG',

'DMCRCR', AND FINALLY THE EIGENVALUES CAN BE DETERMINED BY
USING ROUTINE 'DEVLCG'.

PARAMETER (N-204, NG-51)

IMPLICIT REAL*8 (A-H,O-Z)

COMPLEX*I6 A(N,N),BLK(4,4),B(N,N)
COMPLEX*I6 ALPHA(N) ,BETA(N), EVAL(N)

COMPLEX* 16 YII,YI2,YI3, YI4, Y21, Y22, Y23, Y24, Y31, Y32, Y33, Y34

COMPLEX* 16 Y41,Y42, Y43,Y44,YI, Y2 ,YB, YT, YDIA

COMPLEX*I6 BINV(N,N),C(N,N)
EXTERNAL DGVLCG, DLINCG, DMCRCR, DEVLCG

COMMON /WORKSP/ RWKSP

REAL RWKSP (332948)

CALL IWKIN (332948)

LDAsN
LDB-N

LDBINV-N

NR-N
LDCmN

OPEN(UNIT_16,STATUS-'NEW',FILE-'FOR016 ')

FILLING THE MATRICES WITH ZEROES

4

5

DO 5 II-I,N

DO 4 JJ_I,N

A(II,JJ}-(O.0DO,0.0D0)

B(II,JJ)-(0.OD0,0.0D0)
CONTINUE

CONTINUE
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C
C
C

C
C

C

C

C

C
C
C

PARAMETER BLOCK

BET=0.01D0
WN=I. 0DO

DO 300 IY=I,I
WN=WN+ 0.5D0

DO 200 IX=l,l

BET=BET* (5.0D0*IX)
T2=0.001D0

T3=0.001D0

RH2 i-0. 001225D0

RH31=O. 001225D0

RHDI- (DABS (RH2 I-i. 0D0) +DABS (RH3 I-I. 0D0) )/2.0DO

CALCULATING NON-ZERO ELEMENTS

DO 20 M'I,NG

SUB'((NG*I.ODO)+I.0D0)/2.0DO

CF-(M*I.0D0)-SUB

X13--1.0DO*WN*BET*DEXP(WN)

X14=I.0D0*WN*BET*DEXP(-1.0D0*WN)
X23--1.0DO*WN*BET

X24-1.0DO*WN*BET

X31N-WN*WN*DEXP(-1.0DO*WN)*(RHD1)

X31D=T2*(RH21+l.0D0)

X31=X31N/X31D

X34-(-1. ODO*DEXP(-1.0D0*WN) * (RH21-1.0D0) *CF) / (RH21+1.0D0)

X42- (-i. OD0*WN*WN* (RHDI)) / (T3* (i. 0D0+RH31) )

x43-( (i. ODO-RH3 I) *CF)/( i. 0D0+P.H3 i)
XB_-I.0DO*(I.OD0-P, H31)/(1.0D0+RH31)

XT=(DEXP(-I.0D0*WN)*(RH21-1.0DO))/(RH21+I.0D0)

Xl--I.0D0*(RH21-1.0D0)/(2.0D0*(RH21+I.0D0)*DEXP(WN))

X2-(I.OD0-RH31)/(2.0D0*(I.0D0+RH31))
X34M-X34*CF

X43M-X43*CF

ELEMENTS OF 4X4 SUBMATRIX

XZER-O.ODO

YII-DCMPLX(XZER,CF)

BLK(I,1)-Yll

Y12-DCMPLX(XZER,XZER)

BLK(I,2)-YI2
Y13-DCMPLX(X13,XZER)

BLK(1,3)-Y13

Y14_DCMPLX(X14,XZER)
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C
C
C

BLK(I, 4) -YI4
Y2 I-DCMPLX (XZER, XZER)

BLK(2, I)-Y21
Y22 =DCMPLX (XZER, CF)

BLK(2,2)-Y22

Y23-DCMPLX (X23, XZER)

BLK(2,3)-Y23
¥24,,DCMPLX (X24, XZER)

BLK(2,4)-Y24
¥31--DCMPLX (X31, XZER)

BLK(3, i) -Y31

¥32sDCMPLX (XZER, XZER)

BLK(3,2)-Y32

¥33-DCMPLX (XZER, CF)

BLK(3,3)-Y33
¥34-DCMPLX (XZER, X34 )

BLK(3,4)..Y34
¥41-DCMPLX (XZER, XZER)

BLK(4,1)-¥41

Y42-DCMPLX (X42, XZER)

BLK(4,2) -¥42

Y43-DCMPLX (XZER,X43 )
SLK(4,3)-Y43

¥44-DCMPLX (XZER, CF)

BLK(4,4)-¥44

LOADING NON-ZERO TERMS IN MATRIX A

Y I-DCMPLX (XI, XZER)

Y2-DCMPLX (X2, XZER)

NL- (4*M) -3
NU-(4*M)
KI-O

DO 15 I-NL, NU
K2,,O

KI-KI+I

DO i0 J-NL,NU
K2-K2+I

A(I,J)-BLK(KI, K2)

IF (M. EQ. i. OR.M. EQ. NG)

IF(K1 .EQ. 3 )THEN
JB..I-6

JF-I+2

IPI-I+I
JFP-JF+I

JBP-JB+I

A(I,JF)-¥1

A(I,JB)-¥1

GO TO 8
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8

C
C
C
C

C
C

10

15

2O

A(IPI,JFP) =Y2
A(IPI,JBP) =Y2

ELSE

END IF

GO TO i0

IF (M.EQ. I.AND.KI.EQ. 3) THEN
JF=I+2

IPI=I+I

JFP=JF+I

A(I,JF) =YI
A(IPI,JFP) =Y2

ELSE

END IF

IF(M.EQ.NG.AND.KI.EQ. 3)THEN
JB"I-6

IPI-I+I

JBP-JB+I

A(I,JB)-Y1

A(IP1,JBP) -Y2
ELSE

END IF

CONTINUE

CONTINUE

CONTINUE

LOADING NON-ZERO TERMS OF MATRIX

25

30

YB-DCMPLX (XB, XZER)

YT-DCMPLX (XT, XZER)
XNI--I. 0D0

YDIA-DCMPLX (XN1, XZER)
NCT-0

DO 30 L_I,NG

DO 25 MOP,.1,4
NCT,.NCT+I

B (NCT, NCT} -YDIA

IF (MOP. EQ. 4) THEN
NMI-NCT-I

B(NCT, NMI)-YB
B (NMI, NCT) -YT

ELSE

END IF

CONTINUE

CONTINUE

COMPUTING THE INVERSE OF B

B
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C

CALL DLINCG (N, B, LDB, BINV, LDBINV)
C

C

C MULTIPLYING BINV AND A
C

CALL DMCRCR (NR, NR, BINV, LDA, NR, NR, A, LDB, NR, NR, C, LDC)
C
C

C SOLVING FOR THE EIGENVALUES
C

C

C

50

C

200

300

C

C

CALL DEVLCG (N, C, LDC, EVAL)

DO 50 IM'I,N

WRITE(16,*)'EVAL_', EVAL(IM)
CONTINUE

CONTINUE

CONTINUE

CLOSE(16)
STOP
END
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APPENDIX 7

Determinant Calculation

This program takes the eigenvalues which were determined

by Appendix 5 and substitutes them into equation (3.39). The

determinant of the resulting matrix is calculated to check for

accuracy of the eigenvalues. The determinant should equal zero

if the eigenvalues are accurate.

Routine 'DLFTCG' is utilized for LU factorization of the

matrix and computation of the determinant.
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C

C

C

C

C

C

C

C
C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C

THIS PROGRAM 'DET FORTRAN' WILL CALCULATE THE DETERMINANT OF

THE SPARSE MATRIX TO DETERMINE THE ACCURACY OF THE SOLUTION.

THE ROUTINE 'DLFDCG' OF THE IMSL PACKAGE WILL BE UTILIZED. THE

LU FACTORIZATION WILL BE NEEDED AND WILL PROVIDED BY CALLING THE
'DLFTCG' ROUTINE.

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED
EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED

SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A
MICROGRAVITY ENVIRONMENT.

SINCE THE PROBLEM IS ESSENTIALLY A GENERALIZED COMPLEX

EIGENSYSTEM OF THE FORM, A*Z=W*B*Z, THE ROUTINE 'DGVLCG' OF THE
IMSL LIBRARY WILL BE CALLED TO SOLVE FOR THE EIGENVALUES.

PARAMETER (N'204, NG'51)

IMPLICIT REAL*8(A-H,O-Z)

COMPLEX*I6 A(N,N),BLK(4,4),B(N,N)

COMPLEX*f6 ALPHA(N),BETA(N), EVAL(N)
COMPLEX*I6 FAC(N,N),DETI,AMAT(N,N)

COMPLEX*I6 YII,YI2,YI3,YI4,Y21,Y22,Y23,Y24,Y31,Y32,Y33,Y34

COMPLEX*I6 Y41,Y42,Y43,Y44,YI,Y2,YB,YT,YDIA
REAL*8 DET2

INTEGER IPVT(N)

EXTERNAL DGVLCG, DLFDCG, DLFTCG

COMMON /WORKSP/ RWKSP
REAL RWKSP(332948)

CALL IWKIN(332948)

LDA-N

LDB-N

LDFAC'N

OPEN(UNIT"Ig,STATUS-'NEW',FILE='FOR019')

FILLING THE MATRICES WITH ZEROES

4

5

DO 5 II'I,N

DO 4 JJ=I,N

A(II,JJ)-(0.0D0,0.0D0)

B(II,JJ)'(0.0D0,0.0D0)
CONTINUE

CONTINUE
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

PARAMETER BLOCK

BET-0.01D0

WN=I. 0D0

DO 300 IY-I,I
WN,.WN+0.5D0

DO 200 IX-l,l

BET..BET* (5.0D0*IX)
T2-0. 001D0

T3=0. 001D0

RH2 lffi0.001225D0

RH31=0. 001225D0

RHDI-(DABS (RH21-I. 0D0) +DABS (RH31-I. 0D0) )/2.0D0

CALCULATING NON-ZERO ELEMENTS

DO 20 M-I,NG

SUB-( (NG*I. 0D0) +i. 0D0)/2.0D0

CFs(M*I.0D0)-SUB

X13=-l.0D0*WN*BET*DEXP(WN)
X14-1.0D0*WN*BET*DEXP(-1.0D0*WN)
X23--1.0D0*WN*BET

X24-1.0D0*WN*BET

X31NffiWN*WN*DEXP(-I.0D0*WN)*(RHD1)

X31D=T2*(RH21+l.0D0)

X31_X31N/X31D

X34-(-1.0D0*DEXP(-1.0DO*WN)*(RH21-1.0D0)*CF)/(RH21+I.0D0)

X42-(-I.0D0*WN*WN*(RHDI))/(T3*(I.0D0+RH31))

X43-( (I.0D0-RH31)*CF)I (1.0D0+RH31)

XB--1.0D0*(I.0D0-RH31)/(1.0D0+RH31)

XT-(DEXP(-I.0D0*WN)*(RH21-1.0D0))/(RH21+I.0D0)

XI--1.0D0*(RH21-1.0D0)/(2.0D0*(RH21+l.0D0)*DEXP(WN))

X2-(I.0D0-RH31)/(2.0D0*(I.0D0+RH31))
X34M-X34*CF

X43M-X43*CF

ELEMENTS OF 4X4 SUBMATRIX

XZER-0.0D0

¥11ffiDCMPLX(XZER,CF)
BLK(1,1)-¥11

YI2=DCMPLX(XZER,XZER)
BLK(I,2)-¥12
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C
C
C

YI3-DCMPLX (XI3 ,XZER)

BLK(I, 3)-Y13
yl 4=DCMPLX (XI4, XZER)

BLK (l, 4 )-Y 14
Y2 I=DCMPLX (XZER, XZER)

BLK(2 ,I)"Y21
Y22..DCMPLX (XZER, CF)

BLK(2,2)"¥22
¥23=DCMPLX (X23 ,XZER)

BLK(2,3)..¥23
Y24-DCMPLX (X24, XZER)

BLK(2,4)-¥24
Y31-DCMPLX (X31, XZER)

BLK(3, I)-Y31
Y32 =DCMPLX (XZER, XZER)

BLK(3 ,2)-Y32
Y33-DCMPLX (XZER, CF)

BLK(3,3)-¥33
¥ 34-DCMPLX (XZER, X34 )

BLK(3,4)-Y34
¥ 4I_DCMPLX (XZER, XZER )

BLK(4,1)-¥41
¥42-DCMPLX (X42, XZ ER)

BLK(4,2)-Y42
Y43-DCMPLX (XZER, X43 )

BLK(4,3) =¥43
¥44-DCMPLX (XZER, CF)

BLK (4,4)..¥44

LOADING NON-ZERO TERMS IN

Y1-DCMPLX (Xl, XZER)

Y2-DCMPLX (X2, XZER)

NL" (4*M) -3

NUn (4*S)
KI-O

DO 15 I-NL,NU
K2mO

KI'KI+I

DO I0 JmNL,NU

K2mK2+I

A(I,J)-BLK(KI, K2)

IF(M.EQ. I.OR.M.EQ.NG)

IF (KI. EQ. 3 )THEN
JB-I-6

JF-I+2

IPI-I+I

JFP-JF+I

MATRIX

GO TO

A

8
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8

i0
15
2O

C

C

C

C

JBP_JB+ 1

A(I,JF) -YI

A(I,JB)-Y1

A(IP1,JFP) =Y2

A(IP1,JBP) =Y2
ELSE

END IF

GO TO 10

IF(M.EQ. 1.AND. KI. EQ. 3) THEN
JF=I+2

IPI-I+I

JFP-JF+I

A(I,JF)-Y1

A(IP1,JFP) =Y2
ELSE

END IF

IF(M. EQ.NG.AND. KI. EQ. 3) THEN
JB-I-6

IPlII+l

JBP-JB+I

A(I,JB)-Y1

A(IPI,JBP)-Y2
ELSE

END IF

CONTINUE

CONTINUE

CONTINUE

LOADING NON-ZERO TERMS OF MATRIX

25

30

YB_DCMPLX (XB, XZ ER)

YT-DCMPLX (XT, XZER)
XNI'-I •0DO

YDIA'DCMPLX (XNI, XZER)
NCT_0

DO 30 L_I,NG

DO 25 MOP_I,4
NCT'NCT+I

B (NCT, NCT) -YDIA

IF (MOP. EQ. 4 }THEN
NMI"NCT-I

B (NCT, NMI) "YB

B (NM1, NCT) =YT
ELSE

END IF

CONTINUE

CONTINUE

B
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C

C

C

C

C

50

CALL DGVLCG (N, A, LDA, B, LDB, ALPHA, BETA)

DO 50 IM=I,N

EVAL(IM)=ALPHA(IM)/BETA(IM)
CONTINUE

35O

4O0

C

200 CONTINUE
300 CONTINUE

C

C

C
C COMPUTE NEW MATRIX A=A-W*B

C

DO 500 MM=I,N
DO 400 IL_I,N

DO 350 JL_I,N

AMAT (IL, JL) -A (IL, JL)

A(IL,JL) =AM.AT(IL,JL)- (EVAL(MM) *B (IL, JL) )
CONTINUE

CONTINUE

C FACTORING MATRIX A

C
CALL DLFTCG (N, A, LDA, FAC, LDFAC, IPVT)

C

C
C COMPUTE THE DETERMINANT OF THE FACTORED MATRIX

C
CALL DLFDCG (N, FAC, LDFAC, IPVT, DETI, DET2)

C

C

C

45O

460

5OO

WRITE (19, * )DET1, DET2

DO 460 IR-I,N

DO 450 JR-I,N

A( IR, JR) -AMAT (IR, JR}
CONTINUE

CONTINUE

CONTINUE

CLOSE (19)
STOP

END
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APPENDIX 8

One Interface Solution -Chap 3

As discussed in section 3.4a, a limit approximation is

compared to the 1 interface system of equations (see Appendix

2). The two linear equations (A2.8,A2.9) are solved using

Floquet analysis resulting in a standard eigensystem.

Routine 'DEVLCG' is used to determine the eigenvalues of

the 1 interface configuration. The results are used to compare

the limit approximation for the 2 interface system.
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C THIS IS A CHECK FOR ONE INTERFACE

C

C THIS PROGRAM SOLVES THE EIGENSYSTEM RESULTING FROM A ONE
C INTERFACE CONFIGURATION.

C

C THE SYSTEM REDUCES TO TWO LINEAR DIFFERENTIAL EQUATIONS WHICH

C ARE SOLVED VIA FLOQUET ANALYSIS IN THE SAME MANNER AS THE
C TWO INTERFACE SYSTEM.

C A STANDARD EIGENVALUE PROBLEM IS OBTAINED AND IS SOLVED USING

C 'DEVLCG' FROM THE IMSL LIBRARY.

C
C

C

C

C

PARAMETER (N-102, NG=51)

IMPLICIT REAL*8 (A-H,O-Z)

COMPLEX*16 A(N,N), BLK(2,2)

COMPLEX* 16 EVAL (N)

COMPLEX*16 Yll, Y12, Y21, Y22, YOUT
EXTERNAL DEVLCG

COMMON /WORKSP/ RWKSP

REAL RWKSP(332948)
CALL IWKIN (332948)

LDA-N

OPEN (UNIT'16, STATUS'' NEW' ,FILE" 'FOR016 ')
C

C FILLING THE A MATRIX WITH ZEROES

DO 5 I'I,N

DO 4 J'I,N

A(I,J)-(O. 0D0,0. ODO)
CONTINUE

CONTINUE

4
5

C

C

C PARAMETER BLOCK

RH21-O.001225D0

DO 500 NJm0,0
Q-I.0D0*10.0D0**NJ
WN'0.0DO
DO 400 NT"I,50
WN'WN+0.05D0

C

C CALCULATING NON-ZERO TERMS OF A

DO 100 M'I,NG

SUB'( (NG*I. 0D0) +I. 0D0)/2.0D0
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C

C
C

C

C

C

C
C

C
C

C

C

CF- (M*I. ODO) -SUB
X2 I--Q*WN*WN
X12=.WN

XOUT- (1. ODO-RH21) / (2. OD0* (i. 0D0+RH2 I) )
FC=-CF

ELEMENTS OF 2X2 BLOCK

XZER=0. ODO

YII-DCMPLX (XZER, FC)
BLK(1,1) =Yll

Y12-DCMPLX (X12, XZER)

BLK(1,2) _Y12

Y21-DCMPLX (X21, XZER)

BLK (2,1)-Y21

Y22-DCMPLX (XZER, FC)
BLK(2,2) =¥22

YOUT= DCMPLX (XOUT, XZ ER)

LOADING TERMS OF A

MP=(2*M)-I
MPI"MP+I

MPM'MPI-3

MPP'MPI+I

A (MP, MP)'BLK (i, 1)
A(MP, MPI) =SLK(I, 2)
A (MP1, MP) -BLK (2,1)
A (MPI,MPI)-SLK(2,2)
IF(M.NE. 1) THEN

A (MP1, MPM) -YOUT
ELSE

END IF

IF (M. NE .NG) THEN

A (MP1, MPP) mYOUT
ELSE

END IF

100 CONTINUE

CALL DEVLCG (N, A, LDA, EVAL)

REC0-eVAL (N)

UNUM-1.0

WN-WN+0.05D0
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28

C

C

400

5OO

C

WRITE (16,28 )WN, UNUM, RECO

FORMAT (iX, F5.2 ,F6.3 ,El0.3)

WN=WN-O. 05D0

CONTINUE

CONTINUE

CLOSE (16)
STOP

END

201



APPENDIX 9

Time Response of Interfaces - Chap 4

For the non-periodic forcing case, a system of linear

differential equations in terms of (E,F,E,@) is obtained

(equations (4.22,4.23)). E and F are the displacements of the

upper and lower interfaces, respectively.

The system of equations is integrated numerically using

'DIVPAG' of the IMSL library. This routine utilizes Gear's to

solve for the tlme-dependent coefficients.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

THIS FILE IS CSLAB FORTRAN

THIS PROGRAM INTEGRATES THE FOURTH ORDER MULTI-SLAB

FORCED LINEAR SYSTEM, CONSISTING OF E(T) ,F,DE/DT,DF/DT

( ALL FCNS. OF T)
THE FORCING IS **NOT*** PERIODIC

GEAR'S METHOD IS USED--PROB MAY BE STIFF.

IMSL LIBRARIES ARE USED.
PARAMETER VALUES ARE CHOSEN.

INTEGER NEQ,NPARAM

PARAMETER (NPARAM-50,NEQm4)

INTEGER IDO,IEND, IMETH,INORM,NOUT

REAL*8 A(I,I),FCN,FCNJ,HINIT,PARAM(NPARAM),TOL,T,TEND,Y(NEQ)
REAL*8 AK, B2,B3,R21,R31,RHDI

REAL*8 EE(3) ,FF(3)

EXTERNAL FCN,DIVPAG,SSET,UMACH

COMMON/DAT/AK, B2, B3 ,R21, R31, RHD1

OPEN(UNIT-24,STATUS-'NEW',FILE='FOR024')

COUNTER

KK-0

JEDE-0

PARAMETER VALUES

AK-1.0D0

B2-1.0D0

B3-1.0D0

R21-0.001225D0
R31-0.OO1225D0

RHDI-(DABS(R21-1.0D0)+DABS(R31-1.0D0))/2.0D0

DO 200 IDa0,1

B2-10.0D0**(-ID)
B3-B2

PP_ID+I

C SET INITIAL CONDITIONS

T-0.00D0
C
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C
C

C

C
C SET

C SET

C

C

C

C

C

C

50

C

C

28

C

60

E=YI, DE/DT-¥2, F=Y3, DF/DT=Y4

CC=-0.05D0

DD-0.05D0

¥ (1) =0.00D0
¥ (2) =-AK*CC*DEXP (-AK)
Y(3) =0.00DO
Y (4 )=AK* DD

PROGRAM SWITCHES/VALUES
HINIT-0. 0001D0

INORM=I

IMETH-2

CALL SSET (NPARAM, 0.0, PARAM, 1)
PARAM (1 )"HINIT

PARAM (10)=INORM
PARAM ( 12 ) -IMETH
ERROR TOLERANCE
TOL-I. 0D-5

WN-AK

BO2,,B2
BO3=B3

IDO-I

DO 100 II-l,5000

TEND..O. 01D0*II

CALL DIVPAG (IDO, NEQ, FCN, FCN3, A, T, TEND, TOL, PARAM, Y )
KK- KK+ I

ZF (KK.EQ.10) GO TO 50
GOTO 60

CONTINUE

JEDE-JEDE+I

TT-T

GRAV-G (T)
IF (JEDE. GE. 150 )GRAV=0.0D0

WRITE(24,28)T,¥(1) ,Y(3),BO2

FORMAT (IX, 4F9.4 )

KKm0
CONTINUE

204



I00
C
C

C

20O

C

C

C

C

C

C

C

COSINE

RELEASE WORKSPACE

IDO"3

CALL DIVPAG(IDO,NEQ,FCN,FCNJ,A,T,TEND,TOL, PARAM,Y)

CONTINUE

CURSE(24)
END

SUBROUTINE FCN(NEQ,T,Y,YP)
INTEGER NEQ

REAL*8 T,Y(NEQ),YP(NEQ)
REAL*8 CFIN,CFID,CF1,CF2N,CF2D,CF2,CBLK2,CBLK3,CFA,CFB

REAL*8 AK,R2,R3,RHD1,B2,B3

COMMON/DAT/AK, B2,B3,R2,R3,RHD1

&

CFIN--2.0D0*AK*DEXP(-AK)

CFID-.(I.0D0+R3)*(1.0D0+R2)+(1.0D0-R3)*(R2-1.0D0)

*DEXP(-2.0D0*AK)

CFI=CFIN/CFID

CF2N-AK*((R2-1.0D0)*DEXP(-2.0D0*AK)-(R2+I.0DO))
CF2D-CFID

CF2=CF2N/CF2D

CBLK2-(AK*AK/B2)*(RHDI)-(R2-1.0D0)*G(T)

CBLK3-(AK*AK/B3)*(RHD1)-(1.0D0-R3)*G(T)

CFA-(I.0D0-R3)/(I.0D0+R2)

CFB_AK/(I.0D0+R2)

YP(1)-Y(2)

YP (2 )- (CFI*CFA* DEXP (-AK) -CFB) *CBLK2 *Y (1 )

+CFI*CBLK3*¥ (3 )

¥P(3)-_r (4)
¥P (4) ,,(DEXP (-AK) * (CF2 *CFA-CFB) *CBLK2 )*Y (1 )+CF2 *CBLK3 *Y (3 )
RETURN

END

FUNCTZON G(T)
REAL*$ G,T

IF(T. LT. I. 0) G-0.0D0

IF(T.GE. 1.0.AND.T. LT. 2.0)G'T-1.0D0

IF(T.GE. 2.0.AND.T. LT. 3.0) G-1.0D0

IF(T.GE. 3.0.AND.T. LT. 5.0) G=-T+4.0D0

IF(T.GE.5.0.AND.T. LT. 6.0) G=-I. 0D0
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C

C

IF(T.GE. 6.0.AND.T. LT. 7 .0) G=T-7 .0D0

IF (T. GE. 7.0D0) G=0.0D0
RETURN

END

SUBROUTINE
DUMMY

RETURN

END

FCNJ (NEQ, T, Y, YP)

206



APPROVAL OF EXAMINING COMMITTEE

John Kuhlman, Ph.D.

Gary M_ris, Ph.D.

Date
=___ PhD, Chair

207


